The relationship between the North American summer monsoon, the Rocky Mountains and the North Pacific subtropical anticyclone in HadAM3

2002 ◽  
Vol 128 (586) ◽  
pp. 2607-2622 ◽  
Author(s):  
L. C. Shaffrey ◽  
B. J. Hoskins ◽  
R. Lu
2019 ◽  
Vol 32 (19) ◽  
pp. 6271-6284 ◽  
Author(s):  
Xiaofan Li ◽  
Zeng-Zhen Hu ◽  
Ping Liang ◽  
Jieshun Zhu

Abstract In this work, the roles of El Niño–Southern Oscillation (ENSO) in the variability and predictability of the Pacific–North American (PNA) pattern and precipitation in North America in winter are examined. It is noted that statistically about 29% of the variance of PNA is linearly linked to ENSO, while the remaining 71% of the variance of PNA might be explained by other processes, including atmospheric internal dynamics and sea surface temperature variations in the North Pacific. The ENSO impact is mainly meridional from the tropics to the mid–high latitudes, while a major fraction of the non-ENSO variability associated with PNA is confined in the zonal direction from the North Pacific to the North American continent. Such interferential connection on PNA as well as on North American climate variability may reflect a competition between local internal dynamical processes (unpredictable fraction) and remote forcing (predictable fraction). Model responses to observed sea surface temperature and model forecasts confirm that the remote forcing is mainly associated with ENSO and it is the major source of predictability of PNA and winter precipitation in North America.


2020 ◽  
Vol 20 (3) ◽  
pp. 11-18
Author(s):  
Hyeon-Cheol Lee ◽  
Young-Jun Cho ◽  
Byunghwan Lim ◽  
Seung-Bum Kim

In this study, weather patterns (WPs) associated with the heat wave in South Korea are objectively classified by applying <i>K</i>-means clustering analysis. The representative weather patterns that caused the heat wave were divided into three WPs, namely WP 1, WP 2, and WP 3. The heat wave over the Korean Peninsula was mainly related to the expansion of the North Pacific High (NPH). Moreover, we analyzed the relationship between casualties and WPs of the heat wave. In WP 1, the isobar of NPH was located in the southern part of South Korea. Most casualties (18 people) occurred in this region. In WP 2, NPH was distributed throughout South Korea, with nationwide casualties of 44 people. Moreover, the duration of the heat wave for WP 2 was the longest, at 4.5 days. WP 3 occurred mainly in June, when the NPH was not yet developed, presenting the smallest number of casualties.


2020 ◽  
Vol 33 (16) ◽  
pp. 6833-6848
Author(s):  
Tingting Han ◽  
Minghua Zhang ◽  
Botao Zhou ◽  
Xin Hao ◽  
Shangfeng Li

AbstractThe relationship between the tropical west Pacific (TWP) and East Asian summer monsoon/precipitation has been documented in previous studies. However, the stability for the signals of midsummer precipitation in the TWP sea surface temperature (SST_TWP), which is important for climate variation, has drawn little attention. This study identifies a strengthened relationship between the leading empirical orthogonal function mode (EOF1) of midsummer precipitation over Northeast China (NEC) and the SST_TWP after the mid-1990s. The EOF1 mode shows a significant positive correlation with the SST_TWP for 1996–2016, whereas the relationship is statistically insignificant for 1961–90. Further results indicate that the North Pacific multidecadal oscillation (NPMO) shifts to a positive phase after the 1990s. In the positive NPMO phase, the anomalous circulation over the northeast Pacific expands westward over the central North Pacific–Aleutian Islands region. Concurrently, the SST_TWP-associated wavelike pattern propagates northeastward from the west Pacific to the northwest Pacific and farther to the North Pacific, facilitating the poleward expansion and intensification of the SST_TWP-related circulation anomalies over the North Pacific. Therefore, the SST_TWP has an enhanced influence on NEC precipitation through the modulation of the circulation anomalies over the central North Pacific–Aleutian Islands region after the mid-1990s. Additionally, the tropical anticyclone/cyclone associated with the SST_TWP expands westward to South China, exerting an intensified impact on meridional wind anomalies along eastern China and on moisture transport over NEC. These conditions jointly contribute to the strengthened relationship between the SST_TWP and the EOF1 mode of NEC midsummer precipitation after the mid-1990s.


2016 ◽  
Vol 46 (9) ◽  
pp. 2807-2825 ◽  
Author(s):  
Changheng Chen ◽  
Igor Kamenkovich ◽  
Pavel Berloff

AbstractThis study explores the relationship between coherent eddies and zonally elongated striations. The investigation involves an analysis of two baroclinic quasigeostrophic models of a zonal and double-gyre flow and a set of altimetry sea level anomaly data in the North Pacific. Striations are defined by either spatiotemporal filtering or empirical orthogonal functions (EOFs), with both approaches leading to consistent results. Coherent eddies, identified here by the modified Okubo–Weiss parameter, tend to propagate along well-defined paths, thus forming “eddy trains” that coincide with striations. The striations and eddy trains tend to drift away from the intergyre boundary at the same speed in both the model and observations. The EOF analysis further confirms that these striations in model simulations and altimetry are not an artifact of temporal averaging of random, spatially uncorrelated vortices. This study suggests instead that eddies organize into eddy trains, which manifest themselves as striations in low-pass filtered data and EOF modes.


Author(s):  
R. H. Langland ◽  
Z. Toth ◽  
R. Gelaro ◽  
I. Szunyogh ◽  
M. A. Shapiro ◽  
...  

2015 ◽  
Vol 28 (20) ◽  
pp. 8109-8117 ◽  
Author(s):  
Stephen Baxter ◽  
Sumant Nigam

Abstract The 2013/14 boreal winter (December 2013–February 2014) brought extended periods of anomalously cold weather to central and eastern North America. The authors show that a leading pattern of extratropical variability, whose sea level pressure footprint is the North Pacific Oscillation (NPO) and circulation footprint the West Pacific (WP) teleconnection—together, the NPO–WP—exhibited extreme and persistent amplitude in this winter. Reconstruction of the 850-hPa temperature, 200-hPa geopotential height, and precipitation reveals that the NPO–WP was the leading contributor to the winter climate anomaly over large swaths of North America. This analysis, furthermore, indicates that NPO–WP variability explains the most variance of monthly winter temperature over central-eastern North America since, at least, 1979. Analysis of the NPO–WP related thermal advection provides physical insight on the generation of the cold temperature anomalies over North America. Although NPO–WP’s origin and development remain to be elucidated, its concurrent links to tropical SSTs are tenuous. These findings suggest that notable winter climate anomalies in the Pacific–North American sector need not originate, directly, from the tropics. More broadly, the attribution of the severe 2013/14 winter to the flexing of an extratropical variability pattern is cautionary given the propensity to implicate the tropics, following several decades of focus on El Niño–Southern Oscillation and its regional and far-field impacts.


2021 ◽  
pp. 1-41
Author(s):  
Rui Jiang ◽  
Haijun Yang

AbstractThe effect of the Rocky Mountains (RM) on meridional overturning circulations (MOCs) is investigated using a fully coupled climate model. Located between the Atlantic and Pacific oceans, the RM is the major mountains in North America. It presence plays an important role in atmospheric moisture transport between the two oceans. Adding the RM to a flat global continent (OnlyRocky) leads to a weakening of the atmospheric moisture transport from the North Pacific to the North Atlantic, which is consistent with previous finding. However, the simulation also shows more atmospheric moisture is transported from the tropical Pacific and Atlantic to the North Atlantic. The net effect of moisture transport leads to a slight freshening of the North Atlantic. The Atlantic MOC (AMOC) is hardly changed, but the Pacific MOC (PMOC) declines by 40% due to more moisture retained in the North Pacific. The sensitivity experiment of removing the RM from a realistic global topography (NoRocky) gives roughly opposite atmospheric changes to the OnlyRocky experiment. The AMOC in NoRocky declines slightly and then recovers, while the PMOC is nearly unchanged. The paired experiments conducted in this study demonstrate that the presence of the RM plays a trivial role in Northern Hemisphere deep-water formation.


Sign in / Sign up

Export Citation Format

Share Document