scholarly journals Phase States of Hydrocarbons in Chinese Marine Carbonate Strata and Controlling Factors for Their Formation

2012 ◽  
Vol 30 (5) ◽  
pp. 753-773 ◽  
Author(s):  
Jin Zhijun ◽  
Liu Quanyou ◽  
Qiu Nansheng ◽  
Ding Feng ◽  
Bai Guoping

Chinese marine strata were mainly deposited before the Mesozoic. In the Tarim, Sichuan and Ordos Basins, the marine source rocks are made of sapropelic dark shale, and calcareous shale, and they contain type II kerogen. Because of different burial and geothermal histories, the three basins exhibit different hydrocarbon generation histories and preservation status. In the Tarim Basin, both oil and gas exist, but the Sichuan and Ordos Basins host mainly gas. The Tarim Basin experienced a high heat flow history in the Early Paleozoic. For instance, heat flow in the Late Cambrian varied between 65–75 mW/m2, but it declined thereafter and averages 43.5mW/m2 in the current time. Thus, the basin is a “warm to cold basin”. The Sichuan Basin experienced an increasing heat flow through the Early Paleozoic to Early Permian, and peaked in the latest Early Permian with heat flows of 71–77 mW/m2. Then, the heat flow declined stepwise to the current value of 53.2 mW/m2. Thus, it is a generally a high heat flow “warm basin”. The Ordos Basin has a low heat flow for most of its history (45–55 mW/m2), but experienced a heating event in the Cretaceous, with the heat flow rising to 70–80 mW/m2. Thus, this basin is a “cold to warm basin”. The Tarim Basin experienced three events of hydrocarbon accumulations. Oil accumulation formed in the late stage of Caledonian Orogeny. The generation and accumulation of oil continued in the Northern and Central Tarim (Tabei and Tazhong) till the late Hercynian Orogeny, during which, the accumulated oil cracked into gas in the Hetianhe area and Eastern Tarim (Tadong). In the Himalaya Orogeny, oil cracking occurred in the entire basin, part of the oil in the Tabei and Tazhong areas and most of the oil in the Hetianhe and Tadong areas are converted into gas. In the Sichuan Basin, another triple-episode generation and accumulation history is exhibited. In the Indosinian Orogeny, oil accumulation formed, but in the Yanshanian Orogeny, part of the oil in the eastern Sichuan Basin and most of the oil in the northeastern part was cracked into gas. In the Himalayan Orogeny, oil in the entire basin was converted into gas. The Ordos Basin experienced a double-episode generation and accumulation history, oil accumulation happened in the early Yanshanian stage, and cracked in the late stage. In general, multiple phases of heat flow history and tectonic reworking caused multiple episodes of hydrocarbon generation, oil to gas cracking, and accumulation and reworking. The phases and compositions of oil and gas are mainly controlled by thermal and burial histories, and hardly influenced by kerogen types and source rock types.


2018 ◽  
Vol 36 (4) ◽  
pp. 801-819 ◽  
Author(s):  
Shuangfeng Zhao ◽  
Wen Chen ◽  
Zhenhong Wang ◽  
Ting Li ◽  
Hongxing Wei ◽  
...  

The condensate gas reservoirs of the Jurassic Ahe Formation in the Dibei area of the Tarim Basin, northwest China are typical tight sandstone gas reservoirs and contain abundant resources. However, the hydrocarbon sources and reservoir accumulation mechanism remain debated. Here the distribution and geochemistry of fluids in the Ahe gas reservoirs are used to investigate the formation of the hydrocarbon reservoirs, including the history of hydrocarbon generation, trap development, and reservoir evolution. Carbon isotopic analyses show that the oil and natural gas of the Ahe Formation originated from different sources. The natural gas was derived from Jurassic coal measure source rocks, whereas the oil has mixed sources of Lower Triassic lacustrine source rocks and minor amounts of coal-derived oil from Jurassic coal measure source rocks. The geochemistry of light hydrocarbon components and n-alkanes shows that the early accumulated oil was later altered by infilling gas due to gas washing. Consequently, n-alkanes in the oil are scarce, whereas naphthenic and aromatic hydrocarbons with the same carbon numbers are relatively abundant. The fluids in the Ahe Formation gas reservoirs have an unusual distribution, where oil is distributed above gas and water is locally produced from the middle of some gas reservoirs. The geochemical characteristics of the fluids show that this anomalous distribution was closely related to the dynamic accumulation of oil and gas. The period of reservoir densification occurred between the two stages of oil and gas accumulation, which led to the early accumulated oil and part of the residual formation water being trapped in the tight reservoir. After later gas filling into the reservoir, the fluids could not undergo gravity differentiation, which accounts for the anomalous distribution of fluids in the Ahe Formation.



2013 ◽  
Vol 56 (12) ◽  
pp. 2141-2149 ◽  
Author(s):  
QuanYou Liu ◽  
ZhiJun Jin ◽  
WenHui Liu ◽  
LongFei Lu ◽  
QianXiang Meng ◽  
...  


2020 ◽  
Vol 36 (4) ◽  
pp. 1213-1234
Author(s):  
REN ZhanLi ◽  
◽  
QI Kai ◽  
LIU RunChuan ◽  
CUI JunPing ◽  
...  






2021 ◽  
pp. 105349
Author(s):  
Jingdong Liu ◽  
Tao Liu ◽  
Hua Liu ◽  
Lulu He ◽  
Lunju Zheng


2020 ◽  
Vol 36 (4) ◽  
pp. 1213-1234 ◽  
Author(s):  
REN ZhanLi ◽  
◽  
QI Kai ◽  
LIU RunChuan ◽  
CUI JunPing ◽  
...  


2021 ◽  
Vol 9 ◽  
Author(s):  
Siwei Meng ◽  
Dongxu Li ◽  
Qi Wang ◽  
Jiaping Tao ◽  
Jian Su ◽  
...  

Shale fracturing evaluation is of great significance to the development of shale oil and gas resources, but the commonly used shale evaluation methods (e.g., the method using the brittleness index based on mineral composition or elastic parameters) have certain limitations. Fractures and beddings affecting fracturing are not considered in these methods. Therefore, it is necessary to develop a new method to evaluate fracturing more comprehensively. The samples used in this research were taken from four typical continental shale basins of China, namely the Bohai Bay Basin, the Ordos Basin, the Songliao Basin, and the Junggar Basin. From a microscopic point of view, a three-parameter evaluation method involving multi-dimensional factors has been developed based on the nanoindentation method. Then, the fracturing coefficient K2 is obtained by combining the ratio β of the fracture indentation to the total indentation and the uneven coefficient m. After that, the fracability coefficient K3 is the ratio of the elastic modulus parallel to bedding to that perpendicular to bedding. Finally, the correlation between fracability coefficients K1, K2, and K3 is used to evaluate the overall fracturing performance of shale. The results of this evaluation method are in good agreement with the actual fracturing performance. It can be concluded that this method is highly reliable and practical and well worthy of promoted applications.



2020 ◽  
Vol 194 ◽  
pp. 01045
Author(s):  
WANG Zhiguo ◽  
JIN Wei ◽  
CHENG De’an

Recent years, progress has been made in hydrocarbon exploration of Shaximiao Formation in Sichuan Basin. The Shaximiao formation is fluvial facies deposit, the reservoir is channel sandstone with a low porosity and permeability, oil and gas generate from black shale of the Lianggaoshan formation and the Da’anzhai section of Ziliujing formation. In Longgang, immigration channel is the key condition of accumulation of Shaximiao formation. There are two kinds of immigration channels, fractures caused by hydrocarbon generation overpressure release and faults. Oil generated from Lianggaoshan shale immigrated to the sandstone of bottom part of Sha1, oil and gas generated from Da’anzhai black shale immigrated to upper part sandstone though faults. There is no water in the reservoir. Channel sandstone and source faults interpretation is the key point of exploration success.



Sign in / Sign up

Export Citation Format

Share Document