Location and Severity Identification of Notch-Type Damage in a Two-Storey Steel Framed Structure Utilising Frequency Response Functions and Artificial Neural Network

2012 ◽  
Vol 15 (5) ◽  
pp. 743-757 ◽  
Author(s):  
Bijan Samali ◽  
Ulrike Dackermann ◽  
Jianchun Li
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3227
Author(s):  
Mehran Tahir ◽  
Stefan Tenbohlen

Frequency response analysis (FRA) is a well-known method to assess the mechanical integrity of the active parts of the power transformer. The measurement procedures of FRA are standardized as described in the IEEE and IEC standards. However, the interpretation of FRA results is far from reaching an accepted and definitive methodology as there is no reliable code available in the standard. As a contribution to this necessity, this paper presents an intelligent fault detection and classification algorithm using FRA results. The algorithm is based on a multilayer, feedforward, backpropagation artificial neural network (ANN). First, the adaptive frequency division algorithm is developed and various numerical indicators are used to quantify the differences between FRA traces and obtain feature sets for ANN. Finally, the classification model of ANN is developed to detect and classify different transformer conditions, i.e., healthy windings, healthy windings with saturated core, mechanical deformations, electrical faults, and reproducibility issues due to different test conditions. The database used in this study consists of FRA measurements from 80 power transformers of different designs, ratings, and different manufacturers. The results obtained give evidence of the effectiveness of the proposed classification model for power transformer fault diagnosis using FRA.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1073 ◽  
Author(s):  
Congying Deng ◽  
Yi Feng ◽  
Jie Shu ◽  
Zhiyu Huang ◽  
Qian Tang

A chatter vibration in milling process results in poor surface finish and machining efficiency. To avoid the chatter vibration, the stability lobe diagram (SLD) which is the function of tool point frequency response functions (FRFs) is adopted to predict the chatter-free machining parameters. However, the tool point FRF varies with the changes of machining positions and feed directions within machine tool work volume. Considering this situation, this paper presents a method to predict the position and feed direction-dependent tool point FRF. First, modal parameters of the tool point FRFs obtained at some typical positions and feed directions are identified by the modal theory and matrix transformation method. With the sample information, a back propagation (BP) neural network whose inputs are the position coordinates and feed angle and outputs are the modal parameters can be trained with the aid of the particle swarm optimization (PSO) algorithm. Then, modal parameters corresponding to any position and feed direction can be predicted by the trained BP neural network and used to reorganize the tool point FRFs with the modal fitting technique. A case study was performed on a real vertical machining center to demonstrate the accurate prediction of position and feed direction-dependent tool point FRFs. Furthermore, the position and feed direction-dependent milling stability was researched and origin-symmetric distributions of the limiting axial cutting depths at each machining position were observed.


Sign in / Sign up

Export Citation Format

Share Document