scholarly journals Prediction of Tool Point Frequency Response Functions within Machine Tool Work Volume Considering the Position and Feed Direction Dependence

Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1073 ◽  
Author(s):  
Congying Deng ◽  
Yi Feng ◽  
Jie Shu ◽  
Zhiyu Huang ◽  
Qian Tang

A chatter vibration in milling process results in poor surface finish and machining efficiency. To avoid the chatter vibration, the stability lobe diagram (SLD) which is the function of tool point frequency response functions (FRFs) is adopted to predict the chatter-free machining parameters. However, the tool point FRF varies with the changes of machining positions and feed directions within machine tool work volume. Considering this situation, this paper presents a method to predict the position and feed direction-dependent tool point FRF. First, modal parameters of the tool point FRFs obtained at some typical positions and feed directions are identified by the modal theory and matrix transformation method. With the sample information, a back propagation (BP) neural network whose inputs are the position coordinates and feed angle and outputs are the modal parameters can be trained with the aid of the particle swarm optimization (PSO) algorithm. Then, modal parameters corresponding to any position and feed direction can be predicted by the trained BP neural network and used to reorganize the tool point FRFs with the modal fitting technique. A case study was performed on a real vertical machining center to demonstrate the accurate prediction of position and feed direction-dependent tool point FRFs. Furthermore, the position and feed direction-dependent milling stability was researched and origin-symmetric distributions of the limiting axial cutting depths at each machining position were observed.

1993 ◽  
Vol 20 (5) ◽  
pp. 801-813 ◽  
Author(s):  
Yin Chen ◽  
A. S. J. Swamidas

Strain gauges, along with an accelerometer and a linear variable displacement transducer, were used in the modal testing to detect a crack in a tripod tower platform structure model. The experimental results showed that the frequency response function of the strain gauge located near the crack had the most sensitivity to cracking. It was observed that the amplitude of the strain frequency response function at resonant points had large changes (around 60% when the crack became a through-thickness crack) when the crack grew in size. By monitoring the change of modal parameters, especially the amplitude of the strain frequency response function near the critical area, it would be very easy to detect the damage that occurs in offshore structures. A numerical computation of the frequency response functions using finite element method was also performed and compared with the experimental results. A good consistency between these two sets of results has been found. All the calculations required for the experimental modal parameters and the finite element analysis were carried out using the computer program SDRC-IDEAS. Key words: modal testing, cracking, strain–displacement–acceleration frequency response functions, frequency–damping–amplitude changes.


2014 ◽  
Vol 612 ◽  
pp. 29-34
Author(s):  
Jakeer Hussain Shaik ◽  
J. Srinivas

Dynamic behaviour of spindle system influences chatter stability of machine tool considerably. Self-excited vibrations of the tool results in unstable cutting process which leads to the chatter on the work surface and it reduces the productivity. In this paper, a system of coupled spindle bearing system is employed by considering the angular contact ball bearing forces on stability of machining. Using Timoshenko beam element formulation, the spindle unit is analyzed by including the gyroscopic and centrifugal terms. Frequency response functions at the tool-tip are obtained from the dynamic spindle model. In the second phase, solid model of the system is developed and its dynamic response is obtained from three dimensional finite element analysis. The works on analysis of the stability of milling processes focus on calculating the stability boundary of the machining parameters based on the dynamic models characterizing the milling processes. The stability lobe diagrams are generated from frequency response functions (FRF’s) lead to an stability limit prediction for the system at high speed ranges.


1980 ◽  
Vol 102 (2) ◽  
pp. 357-368
Author(s):  
H. A. Nied

A modal analysis was conducted on gas turbine buckets using a digital Fourier analyzer. This digital test/computer system measures a set of frequency response functions for broadband impulse excitation at successive locations on the bucket airfoil. From the set of frequency response functions, the analyzer computes the modal parameters used to determine the natural frequencies, critical damping ratio and mode shapes of the turbine buckets. An animated display of the mode shapes for a discrete experimental model graphically revealed compound modes due to coupling. The test has shown that the digital modal analysis using the impulse excitation technique is a rapid and precise experimental method to determine the modal parameters of turbine buckets with a high degree of repeatability.


Author(s):  
I. Wilck ◽  
A. Wirtz ◽  
D. Biermann ◽  
P. Wiederkehr

AbstractThe occurrence of chatter vibrations in 5-axis milling processes is a common problem and can result in part failure, surface defects and increased wear of the cutting tool and the machine tool. In order to prevent process vibrations, machining processes can be optimized by utilizing geometric physically-based simulation systems. Since the modal parameters of the machine tool are dependent on the position of the linear and rotary axes, the dynamic behavior of milling processes can change along the NC path despite constant engagement conditions. In order to model the pose-dependent modal properties at the tool tip, the frequency response functions (FRFs) were measured at different locations of the workspace of the machine tool for various poses of the rotary axis of the spindle. To take the varying compliance within the workspace of a machine tool into account in a geometric physically-based milling process simulation, different interpolation methods for interpolating FRFs or parameter values of oscillator-based compliance models (OPV) were applied. For validation, the resulting models were analyzed and compared to measured data. In OPV interpolation, the individual oscillation modes were interpolated in their respective characteristics based on the oscillator parameters (eigenfrequencies, modal masses and damping values). In FRF interpolation, however, there was no differentiation between the modes, resulting in a wrong interpolation. It can therefore provide good results when only a small shift of the eigenfrequencies is expected, as in case of the analyzed machine tool, with only small movements of the translatory axes.


Sign in / Sign up

Export Citation Format

Share Document