Orientation of groins for wide and dynamic lowland rivers

2014 ◽  
Vol 11 (4) ◽  
pp. 431-440
Author(s):  
M. Alauddin ◽  
T. Tsujimoto

Alluvial rivers at lowland are very complex in nature. Severe bank erosion at high flow and undue sedimentation at low flow are very common there. Groins are not functioning successfully with their present arrangements. This study investigates various orientations of groins to identify the optimum one for the effective functioning at high flow and low flow both. A 2D numerical model, RIC-Nays is utilized upon confirmation through detailed experimental data. Two types of groins: non-permeable and permeable, and four orientations: 100°, 90°, 80° and 70° to the bank line downstream are considered. Computation reveals that smaller angled groins function better through deepening the main channel and minimizing the local scour, except deposition near bank reduces.

2011 ◽  
Vol 323 ◽  
pp. 46-50
Author(s):  
Shu Hua Zuo

Taking Yangshan sea-area of the Qiqu archipelago as an example, a 2D numerical model of tidal currents is established to study the change of the current field and the influence of branch blocking in different stages of northern port construction, including tide process, velocity and tidal prism, in the main channel waters and the branches. Verifications with the observed data indicate that the simulated results can reflect the current fields in the region. Based on the numerical model it is rechecked and researched the influence of branch blocking in different stages of northern port construction on the changing processes of hydrodynamic, including tide process, velocity and tidal prism, in the main channel waters and the branches. The paper is to provide the scientific basis for the construction of Yangshan Port’s subsequent engineering.


2014 ◽  
Vol 11 (5) ◽  
pp. 473-480
Author(s):  
M. Alauddin ◽  
T. Tsujimoto

Large sandbars resulted from the instability of loose sedimentary materials are very common in lowland rivers. These, not only, interrupt the inland waterways at low flow, but also make the channels highly unstable forming anabranches, influencing bank erosion, and so on. Groins have key roles to play in such cases. Formation processes of sandbars and their interactions with groins become very urgent to learn for better management of river engineering. RIC-Nays, a two-dimensional model for flow and morphology, is utilized in this study. Computation results reveal that different initial conditions lead to different equilibrium states, and periodic boundary conditions with a small computation domain tend to stabilize multiple bars. Intrusion of groins accelerates the flow in the main channel, which triggers the sediment movement there. Thus the bars move downstream reducing their scale and finally they disappear from the main channel.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


2021 ◽  
Author(s):  
Florian Caillon ◽  
Katharina Besemer ◽  
Peter Peduzzi ◽  
Jakob Schelker

AbstractFlood events are now recognized as potentially important occasions for the transfer of soil microbes to stream ecosystems. Yet, little is known about these “dynamic pulses of microbial life” for stream bacterial community composition (BCC) and diversity. In this study, we explored the potential alteration of stream BCC by soil inoculation during high flow events in six pre-alpine first order streams and the larger Oberer Seebach. During 1 year, we compared variations of BCC in soil water, stream water and in benthic biofilms at different flow conditions (low to intermediate flows versus high flow). Bacterial diversity was lowest in biofilms, followed by soils and highest in headwater streams and the Oberer Seebach. In headwater streams, bacterial diversity was significantly higher during high flow, as compared to low flow (Shannon diversity: 7.6 versus 7.9 at low versus high flow, respectively, p < 0.001). Approximately 70% of the bacterial operational taxonomic units (OTUs) from streams and stream biofilms were the same as in soil water, while in the latter one third of the OTUs were specific to high flow conditions. These soil high-flow OTUs were also found in streams and biofilms at other times of the year. These results demonstrate the relevance of floods in generating short and reoccurring inoculation events for flowing waters. Moreover, they show that soil microbial inoculation during high flow enhances microbial diversity and shapes fluvial BCC even during low flow. Hence, soil microbial inoculation during floods could act as a previously overlooked driver of microbial diversity in headwater streams.


CORROSION ◽  
1959 ◽  
Vol 15 (4) ◽  
pp. 29-32
Author(s):  
M. KRULFELD ◽  
M. C. BLOOM ◽  
R. E. SEEBOLD

Abstract A method of applying the hydrogen effusion method to the measurement of corrosion rates in dynamic aqueous systems at elevated temperature and pressure is described. Data obtained in low carbon steel systems are presented, including (1) reproducibility obtained in measured hydrogen effusion rates at a flow velocity of 1 foot per second at a temperature of 600 F and 2000 psi, and (2) a quantitative comparison between the hydrogen effusion rates in static and in low flow velocity dynamic systems at this temperature and pressure. Some observations are included on corrosion rate measurements in a high flow velocity (30 feet per second) loop by the hydrogen effusion method. Implications of these measurements with regard to the comparison between high flow velocity corrosion and low flow velocity corrosion are mentioned and some data indicating high local sensitivity of the hydrogen effusion method are noted. Some possible difficulties involved in the method are pointed out. 2.3.4


2016 ◽  
Vol 93 ◽  
pp. 75-88 ◽  
Author(s):  
Kamal El Kadi Abderrezzak ◽  
Andrés Die Moran ◽  
Pablo Tassi ◽  
Riadh Ata ◽  
Jean-Michel Hervouet

2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


2021 ◽  
Vol 42 ◽  
pp. 128-134
Author(s):  
Daniela Pintilie ◽  
Iuliana Florina Pană ◽  
Adrian Malciu ◽  
Constantin Puică ◽  
Cristina Pupăză

High Explosive Mortar bombs are used on the battlefield for destroying the manpower, non-armoured equipment and shelters. The paper describes an original experimental and numerical approach regarding the potential threats caused by the detonation of 120 mm HE mortar bombs. The evaluation of the bomb effect presumes the fulfillment of experimental trials that focus on two physical mechanisms which appear after the detonation of the cased high explosive. These mechanisms are the shock wave generation and the fragments propulsion, which were also studied by a numerical model that provides results over the bomb fragmentation mode. The novelty of the paper consists in the calibrated 3D numerical model confirmed by the experimental data, which provides information over the fragmentation process of the case and the initial velocity of its fragments, proving that the main threat of this type of ammunition is the effect through metal fragments. The results of numerical simulation and experimental data are used for their comparative analysis and the assessment of the phenomena.


Sign in / Sign up

Export Citation Format

Share Document