alluvial channels
Recently Published Documents


TOTAL DOCUMENTS

320
(FIVE YEARS 29)

H-INDEX

36
(FIVE YEARS 3)

Hydrology ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Teshager A. Negatu ◽  
Fasikaw A. Zimale ◽  
Tammo S. Steenhuis

A significant constraint in water resource development in developing countries is the lack of accurate river discharge data. Stage–discharge measurements are infrequent, and rating curves are not updated after major storms. Therefore, the objective is to develop accurate stage–discharge rating curves with limited measurements. The Lake Tana basin in the upper reaches of the Blue Nile in the Ethiopian Highlands is typical for the lack of reliable streamflow data in Africa. On average, one stage–discharge measurement per year is available for the 21 gaging stations over 60 years or less. To obtain accurate and unique stage–discharge curves, the discharge was expressed as a function of the water level and a time-dependent offset from zero. The offset was expressed as polynomial functions of time (up to order 4). The rating curve constants and the coefficients for the polynomial were found by minimizing the errors between observed and predicted fluxes for the available stage–discharge data. It resulted in unique rating curves with R2 > 0.85 for the four main rivers. One of the river bottoms of the alluvial channels increased in height by up to 3 m in 60 years. In the upland channels, most offsets changed by less than 50 cm. The unique rating curves that account for temporal riverbed changes can aid civil engineers in the design of reservoirs, water managers in improving reservoir management, programmers in calibration and validation of hydrology models and scientists in ecological research.


2021 ◽  
Author(s):  
Paolo Perret ◽  
Jean Pierre Fosson ◽  
Luca Mondardini ◽  
Valerio Segor

The Val Ferret valley (Courmayeur, Aosta Valley, Italy) was included as a Pilot Action Region (PAR) of the GreenRisk4Alps project since it is both a famous tourist location and a high-risk area for all types of mass movement processes. Typical natural hazards that endanger this PAR are debris flows and avalanches, sometimes connected to ice collapses from the glaciers of the Mont Blanc massif. Thanks to the steep sides of the valley and widespread alluvial channels, these events can reach the valley floor, where public roads, villages and touristic attractions are located. This article presents the main challenges of natural hazard management in the Val Ferret PAR, as well as the role of forestry and protective forests in the Aosta Valley Autonomous Region. As an example of good practice, the monitoring systems of the Planpincieux and Grandes Jorasses glaciers are presented. Recently, these glaciers have become an open-air laboratory for glacial monitoring techniques. Many close-range surveys have been conducted here, and a permanent network of monitoring systems that measure the surface deformation of the glaciers is currently active.


2021 ◽  
Vol 9 (2) ◽  
pp. 379-391
Author(s):  
Jon D. Pelletier

Abstract. The bank-full depths, widths, depth-averaged water velocities, and along-channel slopes of alluvial channels are approximately power-law functions of bank-full discharge across many orders of magnitude. What mechanisms give rise to these patterns is one of the central questions of fluvial geomorphology. Here it is proposed that the bank-full depths of alluvial channels are partially controlled by the maximum heights of gravitationally stable channel banks, which depend on bank material cohesion and hence on clay content. The bank-full depths predicted by a bank-stability model correlate with observed bank-full depths estimated from the bends in the stage–discharge rating curves of 387 U.S. Geological Survey gaging stations in the Mississippi River basin. It is further proposed that depth-averaged water velocities scale with bank-full depths as a result of a self-regulatory feedback among water flow, relative roughness, and channel-bed morphology that limits depth-averaged water velocities to within a relatively narrow range associated with Froude numbers that have a weak inverse relationship to bank-full discharge. Given these constraints on channel depths and water velocities, bank-full widths and along-channel slopes consistent with observations follow by conservation of mass and energy of water flow.


2021 ◽  
Author(s):  
Mel O. Guirro ◽  
Rebecca A. Hodge ◽  
Fiona Clubb ◽  
Laura Turnbull

<p>Sediment transport in rivers depends on interactions between sediment supply, topography, and flow characteristics. Erosion in bedrock rivers controls topography and is paramount in landscape evolution models. The riverbed cover indicates sediment transport processes: alluvial cover indicates low transport capacity or high sediment supply, and bedrock cover demonstrates high transport capacity or low sediment supply. This study aims to evaluate controls on the spatial distributions of bedrock and alluvial covers, by analysing scaling geometric relations between bedrock and alluvial channels. A Principal Component Analysis (PCA) was conducted to evaluate correlations between river slope, depth, width, and sediment size. The two principal components were used to implement a clustering analysis in order to identify differences in alluvial and bedrock sections. Spatial distributions of mixed bedrock-alluvial sections were investigated from two datasets - Scottish Highlands (Whitbread 2015) and the San Gabriel Mountains in the USA (Dibiase 2011)-, representing different environmental conditions, such as erosion rates, lithology, tectonics, and climate. The rock strength of both areas is high, and therefore it is excluded as a factor that explains the difference between the areas. The results of the cluster analysis were different in each environment. The main sources of variation among river sections identified by PCA were slope and width for the San Gabriel Mountains, and drainage area and depth for the Scottish Highlands. The rivers in the Scottish Highlands formed clusters that differentiate bedrock and alluvial patches, showing a clear geometric distinction between channels. However, the river analysis from the San Gabriel Mountains showed no clusters. Bedrock rivers are typically described as narrower and steeper than alluvial rivers, as demonstrated by rivers in the Scottish Highlands (e.g. slope was around 0.1 m/m for bedrock sections and 0.01 m/m for alluvial sections). However, this may not be always the case: both bedrock and alluvial sections in San Gabriel Mountains presented similar slope around 0.1 m/m. The inability to demonstrate significant geometry differences in bedrock and alluvial sections in the San Gabriel Mountains may be due to the frequency and magnitude of sediment supply of that region, which are influenced by tectonics and climate. A major difference in the supply of sediment in rivers of the San Gabriel Mountains is the frequent occurrence of debris flow. Non-linear interactions between hydraulic and sediment processes may constantly modify the geometry of bedrock-alluvial channels, increasing the complexity of analysis at larger temporal and spatial scales. This study is part of the i-CONN project, which links connectivity in different scientific disciplines. A sediment connectivity assessment in different environments and scales may be useful to evaluate the controls on the spatial distribution of bedrock and alluvial rivers.</p><p> </p><p>Dibiase, R.A. 2011. Tectonic Geomorphology of the San Gabriel Mountains, CA. PhD Thesis. Arizona State University, Phoenix, 247pp.</p><p>Whitbread, K. 2015. Channel geometry data set for the northwest Scottish Highlands. British Geological Survey Open Report, OR/15/040. 12pp.</p>


2021 ◽  
Author(s):  
Fergus McNab ◽  
Taylor Schildgen ◽  
Jens Turowski ◽  
Andrew Wickert

<p>Periodic variation in Earth's orbit leads to variation in temperature and precipitation at its surface that are expected to exert a profound influence on landscape evolution. Indeed, cyclical fluctuations in sediment yield and grain size are a ubiquitous feature of the geological record, and recurrence times of geomorphological features such as fluvial terraces and alluvial fans often appear to reflect orbital periodicities. However, making quantitative interpretations of these records requires a detailed understanding of the ways in which sediment is transported from mountainous source regions along alluvial channels to depositional sinks. Sediment transport processes may dampen (i.e. buffer, 'shred') or amplify climate signals, such as changes in channel elevation or sediment flux, and may introduce a lag between them and the responsible external forcing. Recent modelling studies, mostly focused on the potential transmission of climatic signals to sedimentary archives, have predicted a wide range of behaviour and have proven challenging to test in the field. Here, we aim to clarify this discussion and also consider the potential preservation of climatic signals by fluvial terraces along alluvial channels. Our starting point is a recently developed model describing the long-profile evolution of gravel-bed rivers. This model is the first of its kind to be derived from first principles using physical relationships that have been extensively tested in laboratory settings, and takes a non-linear diffusive form. We employ perturbation theory to obtain approximate analytical solutions to the relevant equations that describe how channel elevation and sediment flux vary in response to periodic fluctuations in discharge and sediment supply. Our solutions contain expressions for response amplitudes and lag times as functions of downstream distance, system 'diffusivity' and forcing frequency. Lag times can be a significant fraction of the forcing period, implying that care is required when interpreting the timings of terrace formation in terms of changes in discharge or sediment supply. We also show that at the onset of periodic forcing, or a change in the dominant forcing period, alluvial channels undergo a transient response as they adjust to a new quasi-steady state. Importantly, this result implies that suites of fluvial terraces can be preserved without the need for significant local base-level fall. Since the expressions presented here are defined in terms of fundamental properties of alluvial channels, they should be readily applicable to real settings.</p>


2021 ◽  
Author(s):  
Bao-shan FAN ◽  
Wanguang Sun ◽  
Yu-hang LIU ◽  
Cheng-zhen LI

2021 ◽  
Vol 264 ◽  
pp. 03015
Author(s):  
Takhir Majidov ◽  
Nazir Ikramov

In the riverbeds and canals that run on non-cohesive grounds, bedload sediments move in the ridges form. Ridge forms determine the flow rate of bedload sediments, hydraulic resistances, the types and rates of deformations in alluvial channels. The main elements of ridge formations are height, gentle and steep length with corresponding escarpments. The ridge's steep length and this corresponding escarpment change with changes in the flow hydraulic characteristics. With a change in the ridge's steep length and its steep escarpment, the hydraulic resistance of the channel, the flow rate of bedload sediments, the types, and the channel deformation rates change. In the laboratory, a series of experiments with different sediments compositions and diameters were carried out on the hydraulic tray to determine the main elements (total, gentle and steep length, and the ridge height) and the dynamic characteristics of the ridge formations and the flow hydraulic characteristics. Calculation formulas for determining the coefficient of the ridge lower escarpments with and without taking into account the angle of the natural ground escarpment under water and in the dry state, and the dependence of the steepness of the relative ridge on the relative flow velocity, are obtained. The obtained dependencies allow to accurately determine the geometric and dynamic characteristics of bedload ridges and the corresponding hydraulic characteristics that may define the view ridge formations, ridges resistance of the channel, and the flow rate of bedload sediments, and to design sustainable escarpments large channels.


Sign in / Sign up

Export Citation Format

Share Document