scholarly journals Interaction of Wind-Waves and Currents in the Ems-Dollard Estuary

2011 ◽  
Vol 2 (4) ◽  
pp. 249-258 ◽  
Author(s):  
H. Hein ◽  
S. Mai ◽  
U. Barjenbruch
1960 ◽  
Vol 13 (3) ◽  
pp. 253-272 ◽  
Author(s):  
George L. Hanssen ◽  
Richard W. James

The paper describes the system developed and used by the United States Hydrographic Office for selecting the optimum track for transoceanic crossings by applying long-range predictions of wind, waves and currents to a knowledge of how the routed vessel reacts to these variables. Over a period of two years, over 1000 optimum ship routes were provided to one authority, with an average reduction in travel time of 14 hours.


Author(s):  
Benjamin Armentor ◽  
Joseph Stevens ◽  
Nathan Madsen ◽  
Andrew Durand ◽  
Joshua Vaughan

Abstract For mobile robots, such as Autonomous Surface Vessels (ASVs), limiting error from a target trajectory is necessary for effective and safe operation. This can be difficult when subjected to environmental disturbances like wind, waves, and currents. This work compares the tracking performance of an ASV using a Model Predictive Controller that includes a model of these disturbances. Two disturbance models are compared. One prediction model assumes the current disturbance measurements are constant over the entire prediction horizon. The other uses a statistical model of the disturbances over the prediction horizon. The Model Predictive Controller performance is also compared to a PI-controlled system under the same disturbance conditions. Including a disturbance model in the prediction of the dynamics decreases the trajectory tracking error over the entire disturbance spectrum, especially for longer horizon lengths.


2021 ◽  
Author(s):  
Felipe M. Moreno ◽  
Eduardo A. Tannuri

Abstract The methodology described in this paper is used to reduce a large set of combined wind, waves, and currents to a smaller set that still represents well enough the desired site for ship maneuvering simulations. This is achieved by running fast-time simulations for the entire set of environmental conditions and recording the vessel’s drifting time-series while it is controlled by an automatic-pilot based on a line-of-sight algorithm. The cases are then grouped considering how similar the vessel’s drifting time-series are, and one environmental condition is selected to represent each group found by the cluster analysis. The measurement of dissimilarity between the time-series is made by application of Dynamic Time Warping and the Cluster Analysis is made by the combination of Partitioning Around Medoids algorithm and the Silhouette Method. Validation is made by maneuvering simulations made with a Second Deck Officer.


1966 ◽  
Vol 26 (4) ◽  
pp. 651-687 ◽  
Author(s):  
G. M. Hidy ◽  
E. J. Plate

The development of waves and currents resulting from the action of a steady wind on initially standing water has been investigated in a wind–water tunnel. The mean air flow near the water surface, the properties of wind waves, and the drift currents were measured as they evolved with increasing fetch, depth and mean wind speed. The results suggest how the stress on the water surface changes with an increasingly wavy surface, and, from a different viewpoint, how the drift current and the waves develop in relation to the friction velocity of the air. The amplitude spectra calculated for the wavy surface reflected certain features characteristic of an equilibrium configuration, especially in the higher frequencies. The observed equilibrium range in the high frequencies of the spectra fits the f−5 rule satisfactorily up to frequencies f of about 15 c/s. The wave spectra also revealed how the waves grow in the channel, both with time at a fixed point, and with distance from the leading edge of the water. These results are discussed in the light of recent theories for wave generation resulting from the action of pressure fluctuations in the air, and from shearing flow instabilities near the wavy surface. The experimental observations agree reasonably well with the predictions of the recent theory proposed by Miles, using growth rates calculated for the mechanism suggesting energy transfer to the water through the viscous layer in the air near the water surface.


Author(s):  
Paulo T. T. Esperanc¸a ◽  
Joel S. Sales ◽  
Stergios Liapis ◽  
Joa˜o Paulo J. Matsuura ◽  
Wes Schott

FPSO roll motions can be major contributor to riser fatigue. This is especially true in regions where wind, waves and currents are non-collinear. Roll motions as high as 23 degrees have been reported in the Campos Basin. The most common roll mitigation strategy consists of adding bilge keels to the FPSO. Motivation for this work came from a need to develop a better understanding of roll motions as a function of bilge keel width. In addition to roll motions, the hydrodynamic forces on the bilge keels were measured. A series of tests were conducted at the LabOceano offshore basin. This new facility has a length of 4 0 m, a width of 30 m, a depth of 15 m and is equipped with a multi-flap wave generator on one side. A ship-shaped FPSO design with sponsons for a deepwater offshore development in Brazil was tested. It has a length of 316 m, a breadth of 57.2 m and a draft of 28.3 m. A 1:70 scale model was constructed. A horizontal soft mooring system consisting of four lines with springs was used. Regular waves of different amplitudes as well as random waves were generated in the basin. Two different loading conditions, ballast (draft = 6.7 m) and loaded (draft = 21.7 m), as well as three wave headings, beam seas (90°), and quartering seas (22.5°, 45°) were considered. Tests were undertaken for four bilge keel configurations, corresponding to a case without bilge keels, as well as bilge keels of 3 different widths (1 m, 2 m and 3 m). In all cases, the bilge keels had a length of 200 m. An optical system was used to measure ship motions in all six degrees of freedom. The hydrodynamic loads on the bilge keels were measured using strain gages.


2015 ◽  
Vol 35 (14) ◽  
pp. 4079-4093 ◽  
Author(s):  
Julian G. O'Grady ◽  
Kathleen L. McInnes ◽  
Frank Colberg ◽  
Mark A. Hemer ◽  
Alexander V. Babanin

Author(s):  
Kjersti Bruserud

In lack of simultaneous metocean data for wind, waves and currents, Norwegian design regulations recommend a combination of metocean parameters for estimation of extreme metocean loads on offshore structures assumed to be conservative. The possible conservatism in the design regulations and also the effect of currents in the estimation of extreme loads are considered. A simplified parametric load model for a jacket, based on waves and currents, is assumed. Both measured and hindcast wave data are combined with different measured current data into load time series and the extreme loads estimated. The extreme load according to the recommended approach is also estimated. This is done at four locations in the northern North Sea. When compared to the recommended approach, the other approaches yield a reduced estimated extreme metocean load. Current is found to have an effect on the total extreme load. The results are intended be illustrative and not suitable for use in design.


2019 ◽  
Vol 3 (3) ◽  
pp. 11-19
Author(s):  
Nashrul Millah ◽  
Indira Anggriani ◽  
Kartika Nugraheni

As a petroleum-producing country, Indonesia has a very important role in supplying national and international petroleum needs. The distribution of oil by sea raises the risk of spills and harms the marine environment, especially for marine life. Most oil spills in the marine environment can form a thin layer on the surface due to the movement of wind, waves, and currents. In this study, the oil spill movement model used the Shallow Water Equation (SWE) model and the equation for the movement of oil spills. The SWE model consists of the equation of mass and momentum derived from the law of conservation of mass which is derived into the equation of continuity and the law of conservation of momentum which is derived into the equation of conservation of momentum. In this model, ocean currents are affected by several disturbances in the form of wind gusts and friction with the bottom. The model is solved numerically through simulation using the finite volume method. Discretization is done by using a staggered grid approach, where the mass and momentum variables are discretized in different cells. From the simulation results, it appears that the movement of oil spills is influenced by wind direction and current. The simulation results also found that the speed of the movement of oil spills has increased in the early times, but then gradually.


Author(s):  
Marko Kinne ◽  
Ronald Schneider ◽  
Sebastian Thöns

AbstractSupport structures of offshore wind turbines are subject to cyclic stresses generated by different time-variant random loadings such as wind, waves, and currents in combination with the excitation by the rotor. In the design phase, the cyclic demand on wind turbine support structure is calculated and forecasted with semi or fully probabilistic engineering models. In some cases, additional cyclic stresses may be induced by construction deviations, unbalanced rotor masses and structural dynamic phenomena such as, for example, the Sommerfeld effect. Both, the significant uncertainties in the design and a validation of absence of unforeseen adverse dynamic phenomena necessitate the employment of measurement systems on the support structures. The quality of the measurements of the cyclic demand on the support structures depends on (a) the precision of the measurement system consisting of sensors, amplifier and data normalization and (b) algorithms for analyzing and converting data to structural health information. This paper presents the probabilistic modelling and analysis of uncertainties in strain measurements performed for the purposes of reconstructing stress resultants in wind turbine towers. It is shown how the uncertainties in the strain measurements affect the uncertainty in the individual components of the reconstructed forces and moments. The analysis identifies the components of the vector of stress resultants that can be reconstructed with sufficient precision.


Sign in / Sign up

Export Citation Format

Share Document