Finite Element Simulation of FRP Strengthened Reinforced Concrete Slabs under Two Independent Air Blasts

2010 ◽  
Vol 1 (4) ◽  
pp. 469-488 ◽  
Author(s):  
Ganchai Tanapornraweekit ◽  
Nicholas Haritos ◽  
Priyan Mendis ◽  
Tuan Ngo
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
A. K. M. Jahangir Alam ◽  
Khan Mahmud Amanat

A finite element simulation for experimental punching shear behavior of reinforced concrete slab is presented in this paper. The numerical simulation is based on previously tested 15 reinforced concrete model slabs. Finite element analysis of reinforced concrete slabs subjected to punching load is evaluated and results are compared with experiments. This study involves development of a nonlinear strategy which implements solution for a realistic description of the deflection, load carrying capacity and crack, pattern related to punching shear of RC slabs for several types of slab thickness, edge restraints, and reinforcement ratio. It has been shown that the load versus. deflection diagram and ultimate load capacity obtained from FE analysis closely match with the experimental results. Comparison of crack pattern of the slab also shows good agreement. It has been shown that using appropriate method and material for numerical simulation, significant benefit can be achieved using finite element tools and advanced computing facilities in obtaining safe and optimum solutions without doing expensive and time-consuming laboratory tests.


2018 ◽  
Vol 4 (4) ◽  
pp. 712 ◽  
Author(s):  
Abdelraouf Tawfik Kassem

Reinforced concrete slabs are elements in direct contact with superimposed loads, having high surface area and small thickness. Such a condition makes slabs highly vulnerable to fire conditions. Fire results in exaggerated deformations in reinforced concrete slabs, as a result of material deterioration and thermal induced stresses. The main objective of this paper is to deeply investigate how circular R.C. slabs, of different configurations, behave in fire condition. That objective has been achieved through finite element modelling. Thermal-structural finite element models have been prepared, using "Ansys". Finite element models used solid elements to model both thermal and structural slab behaviour. Structural loads had been applied, representing slab operational loads, then thermal loads were applied in accordance with ISO 843 fire curve. Outputs in the form of deflection profile and edge rotation have been extracted out of the models to present slab deformations. A parametric study has been conducted to figure out the significance of various parameters such as; slab depth, slenderness ratio, load ratio, and opening size; regarding slab deformations. It was found that deformational behaviour differs significantly for slabs of thickness equal or below 100 mm, than slabs of thickness equal or above 200 mm. On the other hand considerable changes in slabs behaviour take place after 30 minutes of fire exposure for slabs of thickness equals or below 100 mm, while such changes delay till 60 minutes for slabs of thickness equals or above 200 mm.


2014 ◽  
Vol 638-640 ◽  
pp. 208-213 ◽  
Author(s):  
Yuan Yuan Li ◽  
Bin Guo ◽  
Jiang Liu

Increasing the beam cross section is a kind of traditional and universal strengthening methods of civil structure. The mechanical performance test were studied on the mechanics performance and deformation of four reinforced concrete beams in this study. The results show that increase of the cross section and tensile area at the bottom of the steel could effectively improve the performance of mechanical. The beam crack load, yield load, ultimate load and bending strength are increasing with cross section and mechanical. By simulating the relationship bwteen load and deflection. It is concluded that The finite element simulation of reinforced concrete beam with the reasonable concrete unit and reinforced unit can meet the demand of practical engineering.


Sign in / Sign up

Export Citation Format

Share Document