scholarly journals Molecular mechanism of the RNA helicase DHX37 and its activation by UTP14A in ribosome biogenesis

RNA ◽  
2019 ◽  
Vol 25 (6) ◽  
pp. 685-701 ◽  
Author(s):  
Franziska M. Boneberg ◽  
Tobias Brandmann ◽  
Lena Kobel ◽  
Jasmin van den Heuvel ◽  
Katja Bargsten ◽  
...  
RNA ◽  
2019 ◽  
Vol 25 (11) ◽  
pp. 1576-1576
Author(s):  
Franziska M. Boneberg ◽  
Tobias Brandmann ◽  
Lena Kobel ◽  
Jasmin van den Heuvel ◽  
Katja Bargsten ◽  
...  

2011 ◽  
Vol 71 (21) ◽  
pp. 6708-6717 ◽  
Author(s):  
Anthony J. Saporita ◽  
Hsiang-Chun Chang ◽  
Crystal L. Winkeler ◽  
Anthony J. Apicelli ◽  
Raleigh D. Kladney ◽  
...  

2015 ◽  
Vol 35 (17) ◽  
pp. 2918-2931 ◽  
Author(s):  
Yandong Zhang ◽  
Jin You ◽  
Xingshun Wang ◽  
Jason Weber

DEAD/DEAH box RNA helicases play essential roles in numerous RNA metabolic processes, such as mRNA translation, pre-mRNA splicing, ribosome biogenesis, and double-stranded RNA sensing. Herein we show that a recently characterized DEAD/DEAH box RNA helicase, DHX33, promotes mRNA translation initiation. We isolated intact DHX33 protein/RNA complexes in cells and identified several ribosomal proteins, translation factors, and mRNAs. Reduction of DHX33 protein levels markedly reduced polyribosome formation and caused the global inhibition of mRNA translation that was rescued with wild-type DHX33 but not helicase-defective DHX33. Moreover, we observed an accumulation of mRNA complexes with the 80S ribosome in the absence of functional DHX33, consistent with a stalling in initiation, and DHX33 more preferentially promoted structured mRNA translation. We conclude that DHX33 functions to promote elongation-competent 80S ribosome assembly at the late stage of mRNA translation initiation. Our results reveal a newly recognized function of DHX33 in mRNA translation initiation, further solidifying its central role in promoting cell growth and proliferation.


Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3571-3584 ◽  
Author(s):  
S. Zaffran ◽  
A. Chartier ◽  
P. Gallant ◽  
M. Astier ◽  
N. Arquier ◽  
...  

This article describes the characterization of a new Drosophila gene that we have called pitchoune (pit) (meaning small in Provence) because mutations in this gene produce larvae that cannot grow beyond the first instar larval stage although they can live as long as 7–10 days. All the tissues are equally affected and the perfectly shaped larvae are indistinguishable from first instar wild-type animals. Analysis of mutant somatic clones suggests a function in cell growth and proliferation, which is supported by the fact that cell proliferation is promoted by pit overexpression. Tagged-Pit, when transfected in S2 cells, localizes mainly to the nucleolus, pointing towards a possible role in ribosome biogenesis and, consequently, in protein biosynthesis. pit encodes a DEAD-box RNA helicase, a family of proteins involved in the control of RNA structure in many cellular processes and its closest homologue is a human DEAD-box RNA helicase, MrDb, whose corresponding gene transcription is directly activated by Myc-Max heterodimers (Grandori, C., Mac, J., Siebelt, F., Ayer, D. E. and Eisenman, R. N. (1996) EMBO J. 15, 4344–4357). The patterns of expression of d-myc and pit are superimposable. Ectopic expression of myc in the nervous system drives an ectopic expression of pit in this tissue indicating that in Drosophila as well, pit is a potential target of d-Myc. These results suggest that myc might promote cell proliferation by activating genes that are required in protein biosynthesis, thus linking cell growth and cell proliferation.


2021 ◽  
Author(s):  
Kang Wang ◽  
Yulin Cui ◽  
Chunxiao Meng ◽  
Zhengquan Gao ◽  
Song Qin

Abstract Background: Amphora coffeaeformis, a unicellular diatom, can accumulate large amounts of lipids under nitrogen (N) limitation, because of which it can act as a promising raw material for biodiesel production. However, the molecular mechanism underlying lipid accumulation in A. coffeaeformis remains unknown. Results: In this study, we investigated the mechanism underlying lipid accumulation under N deprivation conditions in A. coffeaeformis using RNA-seq. The results showed that the total lipid (TL) content of A. coffeaeformis in normal f/2 medium was 28.22% (TL/DW), which increased to 44.05% after 5 days of N deprivation, while the neutral lipid triacylglycerol (TAG) content increased from 10.41% (TAG/DW) to 25.21%. The transcriptional profile showed that 591 genes were up-regulated, with false discovery rate cutoff of 0.1%, and 1,021 genes were down-regulated, indicating that N deprivation induced wide-ranging reprogramming of regulation, and that most physiological activities were repressed. In addition, ribosome biogenesis, carbon fixation, and photosynthesis in A. coffeaeformis were considerably affected by N deprivation. Conclusions: In summary, the findings initially clarified the molecular mechanism of TAG accumulation and revealed the key genes involved in lipid metabolism in A. coffeaeformis, which will be useful in designing strategies for improving microalgal biodiesel production.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mariam Jaafar ◽  
Julia Contreras ◽  
Carine Dominique ◽  
Sara Martín-Villanueva ◽  
Régine Capeyrou ◽  
...  

AbstractSynthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. e02071-17 ◽  
Author(s):  
Lamya El Mortaji ◽  
Sylvie Aubert ◽  
Eloïse Galtier ◽  
Christine Schmitt ◽  
Karine Anger ◽  
...  

ABSTRACTPresent in every kingdom of life, generally in multiple copies, DEAD-box RNA helicases are specialized enzymes that unwind RNA secondary structures. They play major roles in mRNA decay, ribosome biogenesis, and adaptation to cold temperatures. Most bacteria have multiple DEAD-box helicases that present both specialized and partially redundant functions. By using phylogenomics, we revealed that theHelicobactergenus, including the major gastric pathogenH. pylori, is among the exceptions, as it encodes a sole DEAD-box RNA helicase. InH. pylori, this helicase, designated RhpA, forms a minimal RNA degradosome together with the essential RNase, RNase J, a major player in the control of RNA decay. Here, we usedH. pylorias a model organism with a sole DEAD-box helicase and investigated the role of this helicase inH. pyloriphysiology, ribosome assembly, and duringin vivocolonization. Our data showed that RhpA is dispensable for growth at 37°C but crucial at 33°C, suggesting an essential role of the helicase in cold adaptation. Moreover, we found that a ΔrhpAmutant was impaired in motility and deficient in colonization of the mouse model. RhpA is involved in the maturation of 16S rRNA at 37°C and is associated with translating ribosomes. At 33°C, RhpA is, in addition, recruited to individual ribosomal subunits. Finally, via its role in the RNA degradosome, RhpA directs the regulation of the expression of its partner, RNase J. RhpA is thus a multifunctional enzyme that, inH. pylori, plays a central role in gene regulation and in the control of virulence.IMPORTANCEWe present the results of our study on the role of RhpA, the sole DEAD-box RNA helicase encoded by the major gastric pathogenHelicobacter pylori. We observed that all theHelicobacterspecies possess such a sole helicase, in contrast to most free-living bacteria. RhpA is not essential for growth ofH. pyloriunder normal conditions. However, deletion ofrhpAleads to a motility defect and to total inhibition of the ability ofH. pylorito colonize a mouse model. We also demonstrated that this helicase encompasses most of the functions of its specialized orthologs described so far. We found that RhpA is a key element of the bacterial adaptation to colder temperatures and plays a minor role in ribosome biogenesis. Finally, RhpA regulates transcription of thernjgene encoding RNase J, its essential partner in the minimalH. pyloriRNA degradosome, and thus plays a crucial role in the control of RNA decay.


Author(s):  
Karin Murakami ◽  
Kenji Nakano ◽  
Toshiyuki Shimizu ◽  
Umeharu Ohto

DEAH-box RNA helicase 15 (DHX15) plays important roles in RNA metabolism, including in splicing and in ribosome biogenesis. In addition, mammalian DHX15 also mediates the innate immune sensing of viral RNA. However, structural information on this protein is not available, although the structure of the fungal orthologue of this protein, Prp43, has been elucidated. Here, the crystal structure of the ADP-bound form of human DHX15 is reported at a resolution of 2.0 Å. This is the first structure to be revealed of a member of the mammalian DEAH-box RNA helicase (DEAH/RHA) family in a nearly complete form, including the catalytic core consisting of the two N-terminal RecA domains and the C-terminal regulatory domains (CTD). The ADP-bound form of DHX15 displayed a compact structure, in which the RecA domains made extensive contacts with the CTD. Notably, a potential RNA-binding site was found on the surface of a RecA domain with positive electrostatic potential. Almost all structural features were conserved between the fungal Prp43 and the human DHX15, suggesting that they share a fundamentally common mechanism of action and providing a better understanding of the specific mammalian functions of DHX15.


Sign in / Sign up

Export Citation Format

Share Document