scholarly journals RNA Multimerization as an Organizing Force for Liquid-Liquid Phase Separation

RNA ◽  
2021 ◽  
pp. rna.078999.121
Author(s):  
Philip C Bevilacqua ◽  
Allison M Williams ◽  
Hong-Li Chou ◽  
Sarah Assmann

RNA interactions are exceptionally strong and highly redundant. As such, nearly any two RNAs have the potential to interact with one another over relatively short stretches, especially at high RNA concentrations. This is especially true for pairs of RNAs that do not form strong self-structure. Such phenomenon can drive liquid-liquid phase separation, either solely from RNA-RNA interactions in the presence of divalent or organic cations, or in concert with proteins. RNA interactions can drive multimerization of RNA strands via both base pairing and tertiary interactions. In this article, we explore the tendency of RNA to form stable monomers, dimers, and higher order structures as a function of RNA length and sequence through a focus on the intrinsic thermodynamic, kinetic, and structural properties of RNA. The principles we discuss are independent of any specific type of biomolecular condensate, and thus widely applicable. We also speculate on how external conditions experienced by living organisms can influence formation of nonmembranous compartments, again focusing on the physical and structural properties of RNA. Plants, in particular, are subject to diverse abiotic stresses including extreme temperatures, drought, and salinity. These stresses and the cellular responses to them, including changes in the concentrations of small molecules such as polyamines, salts, and compatible solutes, have the potential to regulate condensate formation by melting or strengthening base pairing. Reversible condensate formation, perhaps including regulation by circadian rhythms, could impact biological processes in plants and other organisms.

RSC Advances ◽  
2016 ◽  
Vol 6 (35) ◽  
pp. 29326-29333 ◽  
Author(s):  
Abdul G. Al Lafi ◽  
James N. Hay

Thermal history and purification effects on the structural properties of PVK were investigated. Liquid–liquid phase separation is suggested to occur by separation of isotactic rich segments from a matrix which is predominantly atactic.


2021 ◽  
Author(s):  
Nazanin Farahi ◽  
Tamas Lazar ◽  
Shoshana J. Wodak ◽  
Peter Tompa ◽  
Rita Pancsa

AbstractLiquid-liquid phase separation (LLPS) is a molecular process that leads to the formation of membraneless organelles (MLOs), i.e. functionally specialized liquid-like cellular condensates formed by proteins and nucleic acids. Integration of data on LLPS-associated proteins from dedicated databases revealed only modest overlap between them and resulted in a confident set of 89 human LLPS driver proteins. Since LLPS is highly concentration-sensitive, the underlying experiments are often criticized for applying higher-than-physiological protein concentrations. To clarify this issue, we performed a naive comparison of in vitro applied and quantitative proteomics-derived protein concentrations and discuss a number of considerations that rationalize the choice of apparently high in vitro concentrations in most LLPS studies. The validity of in vitro LLPS experiments is further supported by in vivo phase-separation experiments and by the observation that the corresponding genes show a strong propensity for dosage sensitivity. This observation implies that the availability of the respective proteins is tightly regulated in cells to avoid erroneous condensate formation. In all, we propose that although local protein concentrations are practically impossible to determine in cells, proteomics-derived cellular concentrations should rather be considered as lower limits of protein concentrations, than strict upper bounds, to be respected by in vitro experiments.


2021 ◽  
Vol 22 (6) ◽  
pp. 3017
Author(s):  
Nazanin Farahi ◽  
Tamas Lazar ◽  
Shoshana J. Wodak ◽  
Peter Tompa ◽  
Rita Pancsa

Liquid–liquid phase separation (LLPS) is a molecular process that leads to the formation of membraneless organelles, representing functionally specialized liquid-like cellular condensates formed by proteins and nucleic acids. Integrating the data on LLPS-associated proteins from dedicated databases revealed only modest agreement between them and yielded a high-confidence dataset of 89 human LLPS drivers. Analysis of the supporting evidence for our dataset uncovered a systematic and potentially concerning difference between protein concentrations used in a good fraction of the in vitro LLPS experiments, a key parameter that governs the phase behavior, and the proteomics-derived cellular abundance levels of the corresponding proteins. Closer scrutiny of the underlying experimental data enabled us to offer a sound rationale for this systematic difference, which draws on our current understanding of the cellular organization of the proteome and the LLPS process. In support of this rationale, we find that genes coding for our human LLPS drivers tend to be dosage-sensitive, suggesting that their cellular availability is tightly regulated to preserve their functional role in direct or indirect relation to condensate formation. Our analysis offers guideposts for increasing agreement between in vitro and in vivo studies, probing the roles of proteins in LLPS.


2021 ◽  
Vol 11 (Suppl_1) ◽  
pp. S21-S22
Author(s):  
Olga Geraskina ◽  
Natalya Maluchenko ◽  
Vasily Studitsky ◽  
Nadezhda Gerasimova ◽  
Daria Koshkina ◽  
...  

Background: Liquid-liquid phase separation (LLPS) that leads to the formation of temporary functional domains in cells plays an important role in the processes of chromatin condensation and gene regulation. Earlier, it was demonstrated that histone H1.4 can form LLPS droplets with DNA. In the present work, LLPS was studied for histone H1.0, which is mainly expressed in differentiated and non-dividing cells. H1.0 is involved in cancer development: its amount decreases with the progression of tumor cells to malignancy. Methods: LSM710 confocal microscope (Zeiss) equipped with the 40x/1.2W objective was used to image mixtures of H1.0 with Cy3/Cy5 labeled DNA or nucleosomes in fluorescent and transmitted-light channels at the excitation of 514 nm. The formation of condensates as a result of LLPS was confirmed by salt-jump and FRAP/FLIP experiments. Results: Condensates were not observed when the ratio of negative to positive charges (N/P) in the samples was >1. At N/P~0.7, optically homogeneous droplet-like condensates were found. The appearance of condensates, their size and shape depended on concentrations of H1.0 and DNA. LLPS condensates but not aggregates disappeared by salt-jump to 650 mM NaCl. FRAP/FLIP experiments revealed a moderate rate of fluorescence recovery (τ½22s) indicating moderate DNA mobility of the H1.0-mediated condensates. The appearance of condensates was also observed in the mixtures of H1.0, DNA and Cy3/Cy5-labeled nucleosomes. Nucleosomes were involved in the condensate formation and found to be 2-fold more mobile (τ½10 s) than DNA. Conclusion: LLPS-related properties of H1.0 were studied for DNA and nucleosomes in vitro. Comparison with H1.4 shows that H1.0 forms liquid condensates of approximately the same size. Our result also may indicate that chromatin retains pronounced dynamic properties in H1.0-induced droplets despite the fact that H1.0 induces the formation of more compact chromatin.


Soft Matter ◽  
2020 ◽  
Vol 16 (37) ◽  
pp. 8547-8553
Author(s):  
Mengying Wang ◽  
Sven Falke ◽  
Robin Schubert ◽  
Kristina Lorenzen ◽  
Qing-di Cheng ◽  
...  

Pulsed electric fields induce modulation of growth kinetics and structural properties of protein liquid dense clusters.


2021 ◽  
Vol 433 (2) ◽  
pp. 166731
Author(s):  
Yanxian Lin ◽  
Yann Fichou ◽  
Andrew P. Longhini ◽  
Luana C. Llanes ◽  
Pengyi Yin ◽  
...  

Author(s):  
Yanting Xing ◽  
Aparna Nandakumar ◽  
Aleksandr Kakinen ◽  
Yunxiang Sun ◽  
Thomas P. Davis ◽  
...  

2021 ◽  
Author(s):  
Kazuki Murakami ◽  
Shinji Kajimoto ◽  
Daiki Shibata ◽  
Kunisato Kuroi ◽  
Fumihiko Fujii ◽  
...  

Liquid–liquid phase separation (LLPS) plays an important role in a variety of biological processes and is also associated with protein aggregation in neurodegenerative diseases. Quantification of LLPS is necessary to...


Sign in / Sign up

Export Citation Format

Share Document