scholarly journals Isolation of specific and high-affinity RNA aptamers against NS3 helicase domain of hepatitis C virus

RNA ◽  
2004 ◽  
Vol 10 (8) ◽  
pp. 1277-1290 ◽  
Author(s):  
B. HWANG
2002 ◽  
Vol 76 (8) ◽  
pp. 3688-3696 ◽  
Author(s):  
Antonino Biroccio ◽  
Jörg Hamm ◽  
Ilario Incitti ◽  
Raffaele De Francesco ◽  
Licia Tomei

ABSTRACT In order to find small RNA molecules that are specific and high-affinity ligands of nonstructural 5B (NS5B) polymerase, we screened by SELEX (systematic evolution of ligands by exponential amplification) a structurally constrained RNA library with an NS5BΔC55 enzyme carrying a C-terminal biotinylation sequence. Among the selected clones, two aptamers appeared to be high-affinity ligands of NS5B, with apparent dissociation constants in the low nanomolar range. They share a sequence that can assume a stem-loop structure. By mutation analysis, this structure has been shown to correspond to the RNA motif responsible for the tight interaction with NS5B. The aptamers appeared to be highly specific for the hepatitis C virus (HCV) polymerase since interaction with the GB virus B (GBV-B) NS5B protein cannot be observed. This is consistent with the observation that the activity of the HCV NS5B polymerase is efficiently inhibited by the selected aptamers, while neither GBV-B nor poliovirus 3D polymerases are affected. The mechanism of inhibition of the NS5B activity turned out to be noncompetitive with respect to template RNA, suggesting that aptamers and template RNA do not bind to the same site. As a matter of fact, mutations introduced in a basic exposed surface of the thumb domain severely impaired both the binding of and activity inhibition by the RNA aptamers.


2005 ◽  
Vol 79 (5) ◽  
pp. 2689-2699 ◽  
Author(s):  
Rhea Sumpter ◽  
Yueh-Ming Loo ◽  
Eileen Foy ◽  
Kui Li ◽  
Mitsutoshi Yoneyama ◽  
...  

ABSTRACT Virus-responsive signaling pathways that induce alpha/beta interferon production and engage intracellular immune defenses influence the outcome of many viral infections. The processes that trigger these defenses and their effect upon host permissiveness for specific viral pathogens are not well understood. We show that structured hepatitis C virus (HCV) genomic RNA activates interferon regulatory factor 3 (IRF3), thereby inducing interferon in cultured cells. This response is absent in cells selected for permissiveness for HCV RNA replication. Studies including genetic complementation revealed that permissiveness is due to mutational inactivation of RIG-I, an interferon-inducible cellular DExD/H box RNA helicase. Its helicase domain binds HCV RNA and transduces the activation signal for IRF3 by its caspase recruiting domain homolog. RIG-I is thus a pathogen receptor that regulates cellular permissiveness to HCV replication and, as an interferon-responsive gene, may play a key role in interferon-based therapies for the treatment of HCV infection.


Virology ◽  
1997 ◽  
Vol 237 (2) ◽  
pp. 270-282 ◽  
Author(s):  
P.K.R. Kumar ◽  
Keigo Machida ◽  
Petri T. Urvil ◽  
Nobuko Kakiuchi ◽  
Daesety Vishnuvardhan ◽  
...  

2012 ◽  
Vol 287 (46) ◽  
pp. 39224-39232 ◽  
Author(s):  
Jonas Kügler ◽  
Stefan Schmelz ◽  
Juliane Gentzsch ◽  
Sibylle Haid ◽  
Erik Pollmann ◽  
...  

2001 ◽  
Vol 75 (17) ◽  
pp. 8031-8044 ◽  
Author(s):  
Jaerang Rho ◽  
Seeyoung Choi ◽  
Young Rim Seong ◽  
Joonho Choi ◽  
Dong-Soo Im

ABSTRACT The NS3 protein of hepatitis C virus (HCV) contains protease and RNA helicase activities, both of which are likely to be essential for HCV propagation. An arginine residue present in the arginine-glycine (RG)-rich region of many RNA-binding proteins is posttranslationally methylated by protein arginine methyltransferases (PRMTs). Amino acid sequence analysis revealed that the NS3 protein contains seven RG motifs, including two potential RG motifs in the 1486-QRRGRTGRG-1494 motif IV of the RNA helicase domain, in which arginines are potentially methylated by PRMTs. Indeed, we found that the full-length NS3 protein is arginine methylated in vivo. The full-length NS3 protein and the NS3 RNA helicase domain were methylated by a crude human cell extract. The purified PRMT1 methylated the full-length NS3 and the RNA helicase domain, but not the NS3 protease domain. The NS3 helicase bound specifically and comigrated with PRMT1 in vitro. Mutational analyses indicate that the Arg1493 in the QRR1488GRTGR1493G region of the NS3 RNA helicase is essential for NS3 protein methylation and that Arg1488 is likely methylated. NS3 protein methylation by the PRMT1 was decreased in the presence of homoribopolymers, suggesting that the arginine-rich motif IV is involved in RNA binding. The results suggest that an arginine residue(s) in QRXGRXGR motif IV conserved in the virus-encoded RNA helicases can be posttranslationally methylated by the PRMT1.


2003 ◽  
Vol 36 (1) ◽  
pp. 41-49 ◽  
Author(s):  
N Pentón ◽  
A Musacchio ◽  
J.M Rivera ◽  
J Roca ◽  
M Ponce ◽  
...  

1999 ◽  
Vol 73 (10) ◽  
pp. 8798-8807 ◽  
Author(s):  
Chao Lin ◽  
Joseph L. Kim

ABSTRACT The NS3 protein of hepatitis C virus (HCV) is a bifunctional protein containing a serine protease in the N-terminal one-third, which is stimulated upon binding of the NS4A cofactor, and an RNA helicase in the C-terminal two-thirds. In this study, a C-terminal hexahistidine-tagged helicase domain of the HCV NS3 protein was expressed in Escherichia coli and purified to homogeneity by conventional chromatography. The purified HCV helicase domain has a basal ATPase activity, a polynucleotide-stimulated ATPase activity, and a nucleic acid unwinding activity and binds efficiently to single-stranded polynucleotide. Detailed characterization of the purified HCV helicase domain with regard to all four activities is presented. Recently, we published an X-ray crystallographic structure of a binary complex of the HCV helicase with a (dU)8oligonucleotide, in which several conserved residues of the HCV helicase were shown to be involved in interactions between the HCV helicase and oligonucleotide. Here, site-directed mutagenesis was used to elucidate the roles of these residues in helicase function. Four individual mutations, Thr to Ala at position 269, Thr to Ala at position 411, Trp to Leu at position 501, and Trp to Ala at position 501, produced a severe reduction of RNA binding and completely abolished unwinding activity and stimulation of ATPase activity by poly(U), although the basal ATPase activity (activity in the absence of polynucleotide) of these mutants remained intact. Alanine substitution at Ser-231 or Ser-370 resulted in enzymes that were indistinguishable from wild-type HCV helicase with regard to all four activities. A mutant bearing Phe at Trp-501 showed wild-type levels of basal ATPase, unwinding activity, and single-stranded RNA binding activity. Interestingly, ATPase activity of this mutant became less responsive to stimulation by poly(U) but not to stimulation by other polynucleotides, such as poly(C). Given the conservation of some of these residues in other DNA and RNA helicases, their role in the mechanism of unwinding of double-stranded nucleic acid is discussed.


2017 ◽  
Vol 98 (3) ◽  
pp. 374-384 ◽  
Author(s):  
Huajun Zhang ◽  
Jianbing Zhang ◽  
Lei Chen ◽  
Zhiming Weng ◽  
Ye Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document