scholarly journals A Warning Threshold Proposal for Operation Improvement of Maritime DGPS Reference Station

2017 ◽  
Vol 21 (1) ◽  
pp. 12-20
Author(s):  
Yong Kwon Choi ◽  
Ju Hyun Lee ◽  
Seok Bo Son ◽  
Sang Jeong Lee
Keyword(s):  
2021 ◽  
Vol 13 (14) ◽  
pp. 2680
Author(s):  
Søren Skaarup Larsen ◽  
Anna B. O. Jensen ◽  
Daniel H. Olesen

GNSS signals arriving at receivers at the surface of the Earth are weak and easily susceptible to interference and jamming. In this paper, the impact of jamming on the reference station in carrier phase-based relative baseline solutions is examined. Several scenarios are investigated in order to assess the robustness of carrier phase-based positioning towards jamming. Among others, these scenarios include a varying baseline length, the use of single- versus dual-frequency observations, and the inclusion of the Galileo and GLONASS constellations to a GPS only solution. The investigations are based on observations recorded at physical reference stations in the Danish TAPAS network during actual jamming incidents, in order to realistically evaluate the impact of real-world jamming on carrier phase-based positioning accuracy. The analyses performed show that, while there are benefits of using observations from several frequencies and constellations in positioning solutions, special care must be taken in solution processing. The selection of which GNSS constellations and observations to include, as well as when they are included, is essential, as blindly adding more jamming-affected observations may lead to worse positioning accuracy.


2021 ◽  
Vol 10 (7) ◽  
pp. 437
Author(s):  
Hongxia Qi ◽  
Yunjia Wang ◽  
Jingxue Bi ◽  
Hongji Cao ◽  
Shenglei Xu

Floor positioning is an important aspect of indoor positioning technology, which is closely related to location-based services (LBSs). Currently, floor positioning technologies are mainly based on radio signals and barometric pressure. The former are impacted by the multipath effect, rely on infrastructure support, and are limited by different spatial structures. For the latter, the air pressure changes with the temperature and humidity, the deployment cost of the reference station is high, and different terminal models need to be calibrated in advance. In view of these issues, here, we propose a novel floor positioning method based on human activity recognition (HAR), using smartphone built-in sensor data to classify pedestrian activities. We obtain the degree of the floor change according to the activity category of every step and determine whether the pedestrian completes floor switching through condition and threshold analysis. Then, we combine the previous floor or the high-precision initial floor with the floor change degree to calculate the pedestrians’ real-time floor position. A multi-floor office building was chosen as the experimental site and verified through the process of alternating multiple types of activities. The results show that the pedestrian floor position change recognition and location accuracy of this method were as high as 100%, and that this method has good robustness and high universality. It is more stable than methods based on wireless signals. Compared with one existing HAR-based method and air pressure, the method in this paper allows pedestrians to undertake long-term static or round-trip activities during the process of going up and down the stairs. In addition, the proposed method has good fault tolerance for the misjudgment of pedestrian actions.


2009 ◽  
Vol 43 (6) ◽  
pp. 910-916 ◽  
Author(s):  
Thomas Hobiger ◽  
Yasuhiro Koyama ◽  
Johannes Boehm ◽  
Tetsuro Kondo ◽  
Ryuichi Ichikawa
Keyword(s):  

2015 ◽  
Vol 41 (4) ◽  
pp. 145-155
Author(s):  
Timo Saari ◽  
Markku Poutanen ◽  
Veikko Saaranen ◽  
Harri Kaartinen ◽  
Antero Kukko ◽  
...  

Precise levelling is known for its accuracy and reliability in height determination, but the process itself is slow, laborious and expensive. We have started a project to study methods for height determination that could decrease the creation time of national height systems without losing the accuracy and reliability that is needed for them. In the pilot project described here, we study some of the alternative techniques with a pilot field test where we compared them with the precise levelling. The purpose of the test is not to evaluate the mutual superiority or suitability of the techniques, but to establish the background for a larger test and to find strong and weak points of each technique. The techniques chosen for this study were precise levelling, Mobile Laser Scanning (MLS) and Global Navigation Satellite System (GNSS) levelling, which included static Global Positioning System (GPS) and Virtual Reference Station (VRS) measurements. This research highlighted the differences of the studied techniques and gave insights about the framework and procedure for the later experiments. The research will continue in a larger scale, where the suitability of the techniques regarding the height systems is to be determined.


GPS Solutions ◽  
2006 ◽  
Vol 10 (3) ◽  
pp. 171-186 ◽  
Author(s):  
Yong Won Ahn ◽  
G. Lachapelle ◽  
S. Skone ◽  
S. Gutman ◽  
S. Sahm

Author(s):  
Jongsun Ahn ◽  
Kyungho Yoo ◽  
Deuk Jae Cho ◽  
Sang Hyun Park ◽  
Sangkyung Sung ◽  
...  
Keyword(s):  

Author(s):  
John D. Thornley ◽  
Utpal Dutta ◽  
John Douglas ◽  
Zhaohui (Joey) Yang

ABSTRACT Anchorage, Alaska, is a natural laboratory for recording strong ground motions from a variety of earthquake sources. The city is situated in a tectonic region that includes the interface and intraslab earthquakes related to the subducting Pacific plate and crustal earthquakes from the upper North American plate. The generalized inversion technique was used with a local rock reference station to develop site response at >20 strong-motion stations in Anchorage. A database of 94 events recorded at these sites from 2005 to 2019 was also compiled and processed to compare their site response with those in the 2018 Mw 7.1 event (main event). The database is divided into three datasets, including 75 events prior to the main event, the main event, and 19 aftershocks. The stations were subdivided into the site classes defined in the National Earthquake Hazards Reduction Program based on estimated average shear-wave velocity in of the upper 30 m (VS30), and site-response results from the datasets were compared. Nonlinear site response was observed at class D and DE sites (VS30 of 215–300 and 150–215  m/s, respectively) but not at class CD and C sites (VS30 of 300–440 and 440–640  m/s, respectively). The relationship of peak ground acceleration versus peak ground velocity divided by VS30 (shear-strain proxy) was shown to further support the observation that sites with lower VS30 experienced nonlinear site response.


2016 ◽  
Vol 13 (21) ◽  
pp. 6049-6066 ◽  
Author(s):  
Ivia Closset ◽  
Damien Cardinal ◽  
Mathieu Rembauville ◽  
François Thil ◽  
Stéphane Blain

Abstract. A massive diatom bloom forms annually in the surface waters of the naturally iron-fertilized Kerguelen Plateau (Southern Ocean). In this study, silicon isotopic signatures (δ30Si) of silicic acid (DSi) and suspended biogenic silica (BSi) were investigated through the whole water column with unprecedented spatial resolution, during the KEOPS-2 experiment (spring 2011). We used δ30Si measurements to track the sources of silicon that fuelled the bloom, and investigated the seasonal evolution of the Si biogeochemical cycle in the iron-fertilized area. We compared the results from stations with various degrees of iron enrichment and bloom conditions to an HNLC reference station. Dissolved and particulate δ30Si signatures were highly variable in the upper 500 m, reflecting the effect of intense silicon utilization in spring, while they were quite homogeneous in deeper waters. The Si isotopic and mass balance identified a unique Winter Water (WW) Si source for the iron-fertilized area that originated from southeast of the Kerguelen Plateau and spread northward. When the WW reached a retroflection of the Polar Front (PF), the δ30Si composition of the silicic acid pool became progressively heavier. This would result from sequential diapycnal and isopycnal mixings between the initial WW and ML water masses, highlighting the strong circulation of surface waters that defined this zone. When comparing the results from the two KEOPS expeditions, the relationship between DSi depletion, BSi production, and their isotopic composition appears decoupled in the iron-fertilized area. This seasonal decoupling could help to explain the low apparent fractionation factor observed in the ML at the end of summer. Taking into account these considerations, we refined the seasonal net BSi production in the ML of the iron-fertilized area to 3.0 ± 0.3 mol Si m−2 yr−1, which was exclusively sustained by surface water phytoplankton populations. These insights confirm that the isotopic composition of dissolved and particulate silicon is a promising tool to improve our understanding of the Si biogeochemical cycle since the isotopic and mass balance allows resolution of processes in the Si cycle (i.e. uptake, dissolution, mixing).


Sign in / Sign up

Export Citation Format

Share Document