scholarly journals Climate Background Analysis of Anomalously Low Temperature and Snowy in Northeast China during 2012/2013 Winter

2014 ◽  
Vol 03 (02) ◽  
pp. 61-68
Author(s):  
倩 李
2011 ◽  
Vol 58 (3) ◽  
pp. 1333-1344 ◽  
Author(s):  
Xiao Fengjin ◽  
Song Lianchun

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 386
Author(s):  
Yongyue Luo ◽  
Chun Li ◽  
Jian Shi ◽  
Xiadong An ◽  
Yaqing Sun

The impacts of Arctic sea ice on the interannual variability of winter extreme low temperature (WELT) in Northeast China (NEC) and the associated atmospheric circulation patterns are explored in this study based on meteorological observation and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP/NCAR) reanalysis data. Results show that WELT in NEC has prominent interannual variability. We further use ±0.8 standard deviation as the threshold to select the years of frequent and rare extreme low temperature anomalies. Using composite analysis, we find that there are significant negative geopotential height anomalies at 500 hPa over NEC and positive geopotential height anomalies along the Arctic region, which represent the intensification of the East Asian trough (EAT) and the negative Arctic Oscillation (AO) phase in the years of more frequent WELT. The opposite characteristics are detected in the years of rare WELT. Furthermore, we determine that the Barents-Kara Seas are key sea ice regions in Arctic area. In the years of frequent WELT, the decrease of autumn Barents-Kara Seas sea ice and the positive sea surface temperature anomaly can last until the following winter, which is conducive to the intensification of anticyclonic anomalies in Ural regions and the northward extension of Ural ridge (UR). The northerly flow in front of UR guides the cold air penetrating southward from polar regions. Moreover, the anomalous cyclone over East Asia deepens the EAT. The northerly wind behind EAT guides the cold air to the NEC region, causing the wintertime low temperature there. The almost opposite situation occurs in the years of rare WELT.


2012 ◽  
Vol 32 (13) ◽  
pp. 4132-4138 ◽  
Author(s):  
张建平 ZHANG Jianping ◽  
王春乙 WANG Chunyi ◽  
赵艳霞 ZHAO Yanxia ◽  
杨晓光 YANG Xiaoguang ◽  
王靖 WANG Jing

2019 ◽  
Vol 136 ◽  
pp. 03009
Author(s):  
Yue Tian ◽  
Wanlai Zhang ◽  
Yihang Zhang

Based on the construction characteristics in the Northeast China Region under low temperature conditions, this article studies the influences of admixtures without antifreezing agent of different types and amounts on the low-temperature concrete and characteristics of pore structure. The results show that the amount of the admixtures is stable, the compressive strength of concrete under the curing condition of low temperature naturally varying is higher than the strength under the curing condition of constant low temperature while the porosity of the concrete under the curing condition of low temperature naturally varying is lower than the porosity under the curing condition of constant low temperature; The most appropriate curing method for the concrete used in winter construction is the curing method of low temperature naturally varying.


2012 ◽  
Vol 26 (4) ◽  
pp. 438-453 ◽  
Author(s):  
Baizhu Shen ◽  
Shi Liu ◽  
Yi Lian ◽  
Guolin Feng ◽  
Shangfeng Li ◽  
...  

Atmosphere ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Weiwei Hu ◽  
Guwei Zhang ◽  
Gang Zeng ◽  
Zhongxian Li

Recently, NCAR (the National Center for Atmospheric Research) released the Community Earth System Model’s low-warming simulations, which provided long-term climate data for stabilization pathways at 1.5 °C and 2.0 °C above pre-industrial levels. Based on these data, six extreme low temperature indices—TXn (coldest day), TNn (coldest night), TX10p (cool days), TN10p (cool nights), CSDI (cold spell duration indicator), and DTR (diurnal temperature range)—were calculated to assess the changes in extreme low temperature over Northern China under 1.5 °C and 2.0 °C warmer future. The results indicate that compared to the preindustrial level, the whole of China will experience 0.32–0.46 °C higher minimum surface air temperature (SAT) warming than the global average, and the winter temperature increase in Northern China will be the most pronounced over the country. In almost all the regions of Northern China, especially Northeast and Northwest China, extreme low temperature events will occur with lower intensity, frequency, and duration. Compared with the present day, the intensity of low temperature events will decrease most in Northeast China, with TXn increasing by 1.9 °C/2.0 °C and TNn increasing by 2.0 °C/2.5 °C under 1.5 °C/2.0 °C global warming, respectively. The frequency of low temperature events will decrease relatively more in North China, with TX10p decreasing by 8 days/11 days and TN10p decreasing by 7 days/9 days under 1.5 °C/2.0 °C warming. CSDI will decrease most in Northwest China, with decreases of 7 days/10 days with 1.5 °C/2.0 °C warming. DTR will decrease in the Northwest and Northeast but increase in North China, with −0.9 °C/−2.0 °C in the Northwest, −0.4 °C/−1.5 °C in the Northeast, and 1.7 °C/2.0 °C in North China in the 1.5 °C/2.0 °C warming scenarios. For temperatures lower than the 5th percentile, the PRs (probability ratios) will be 0.68 and 0.55 of that of the present day under 1.5 °C and 2.0 °C warmer futures, respectively. Global warming of 2.0 °C instead of 1.5 °C will lead to extreme low temperature events decreasing by 6–56% in regard to intensity, frequency, and duration over Northern China, and the maximal values of decrease (24–56%) will be seen in Northeast China.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Xueyuan Kuang ◽  
Danqing Huang ◽  
Ying Huang

AbstractIncreasingly extreme temperature events under global warming can have considerable impacts on sectors such as industrial activities, health, and transportation, suggesting that risk for these kinds of events under climate change and its regional sensitivity should be reassessed. In this study, the observation and multi-model simulations from CMIP6 are comprehensively used to explore the regional differences of the extreme temperature response to climate change from the perspective of return period (RP). The Gumbel model of generalized extremum distribution is applied to estimate the RP for the annual extremum of temperature based on Gaussian distribution of daily temperature. The analysis on the observation in selected three sites indicates that the regional inconsistency of RP variation is not only existed in extreme high temperature (HTx) but also in low temperature (LTn) during the past several decades. The annual amplitude of temperature extremum in the Northeast China is enlarged with summer becoming hotter and winter becoming colder while the opposite situation is detected in Huang-Huai River Basin with cooler summer and relatively stable winter, and South China is characterized by hotter summer and slight warmer winter. From the spatial distribution of the HTx and LTn variations of fix RP, it is found that the Northeast China and Jiang-Huai River Basin is the most sensitive areas, respectively, in the response of extreme low temperature and high temperature to global warming. However, the regional inconsistency of the extreme temperature change is only observed under SSP1-2.6 scenario in the CMIP6 simulation but gradually disappeared from SSP2-4.5 to SSP5-8.5.


Sign in / Sign up

Export Citation Format

Share Document