Experimental Study on Pile-Soil Load Sharing Effect Model under Hierarchical Settlement Mode

2021 ◽  
Vol 10 (05) ◽  
pp. 402-412
Author(s):  
清涛 章
2011 ◽  
Vol 261-263 ◽  
pp. 1578-1583
Author(s):  
Yong Le Li ◽  
Jiang Feng Wang ◽  
Qian Wang ◽  
Kun Yang

based on the finite element method of superstructure-the pile raft foundation-the foundation soil action and interaction are studied. Research shows that the common function is considered, fundamental overall settlement and differential settlement with the increase of floor of a nonlinear trend. The influence of superstructure form is bigger for raft stress, the upper structure existing in secondary stress, and the bending moment and axial force than conventional design method slants big; With the increase of the floors, pile load sharing ratio is reduced gradually,but soil load sharing ratio is increased. Along with the increase of the upper structure stiffness, the load focused on corner and side pile; Increasing thickness of raft, can reduce the certain differential settlement and foundation average settlement, thus reducing the upper structure of secondary stress and improving of foundation soil load sharing ratio, at the same time the distribution of counterforce on the pile head is more uneven under raft, thus requiring more uneven from raft stress, considering the piles under raft and the stress of soils to comprehensive determines a reasonable raft thickness, which makes the design safety economy. As the foundation soil modulus of deformation of foundation soil improvement, sharing the upper loads increases, counterforce on the pile head incline to average, raft maximum bending moment decrease gradually.


2019 ◽  
Vol 136 ◽  
pp. 04066
Author(s):  
Taihao Chen ◽  
Yiming Xu ◽  
Jie Chen

In order to provide reference for the engineering design in the area with large wind, water flow and other horizontal loads, the experimental study on the horizontal bearing capacity of composite foundation under three different working conditions was carried out in this paper, which includes cap-single pile, cap-9 piles and enlarged cap-9 piles. The results show that under the condition of cap-9 piles, the group pile effect coefficient is 1.17, and the load sharing ratio of the back piles is the largest, and the middle and front piless decrease sequentially. Also, with the increase of horizontal load, the load sharing ratio of the back pile increases while the middle and front piless is decremented. Under the condition of enlarged cap-9 piles, the group pile effect coefficient is 1.36, which is 16.24% higher than that of the cap-9 piles, which means the horizontal resistance is obviously enhanced. At the same time, compared with the cap-9 piles, the load sharing ratio of the back pile is reduced while the middle and front piless is increased, which means the stress of pile body tends to be more uniform.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
H. Ligata ◽  
A. Kahraman ◽  
A. Singh

In this paper, results of an experimental study are presented to describe the impact of certain types of manufacturing errors on gear stresses and the individual planet loads of an n-planet planetary gear set (n=3–6). The experimental setup includes a specialized test apparatus to operate a planetary gear set under typical speed and load conditions and gear sets having tightly controlled intentional manufacturing errors. The instrumentation system consists of multiple strain gauges mounted on the ring gear and a multichannel data collection and analysis system. A method for computing the planet load-sharing factors from root strain-time histories is proposed. Influence of carrier pinhole position errors on gear root stresses is quantified for various error and torque values applied to gear sets having three to six planets. The results clearly indicate that manufacturing errors influence gear stresses and planet load sharing significantly. Gear sets having larger number of planets are more sensitive to manufacturing errors in terms of planet load-sharing behavior.


2011 ◽  
Vol 243-249 ◽  
pp. 2300-2303
Author(s):  
Xin Sheng Ge ◽  
Xiao Li Zhai ◽  
Jiang Wei Xue

In order to study the impact of pile modulus variation on the long-short-pile composite foundation,the relation between bearing capacity and settlement, distribution of the axial force and skin friction along pile, pile-soil stress ratio, load sharing ratio and the bearing mechanics of long-short-pile composite foundation with long and short piles were studied based on laboratory tests in three different conditions: Long pile(Aluminum) with short pile (pentatricopeptide repeats, PPR), Long pile(polyvinyl chloride, PVC) with short pile (PPR), and Long pile(Aluminum) with short pile (PVC). Conclusions were as follows: The settlement of long-short-pile composite foundation decreased with the increasing of long piles modulus, meanwhile, the value of long piles axial force increased, and the value of short piles axial force decreased, and the pile-soil load sharing ratio(LSR) increased. On the other hand, there are few influence on settlement, long piles axial force, and pile-soil load sharing ratio when the modulus of short piles modulus changed, except that the value of short piles axial force and short piles modulus increased or decreased on the same direction.


Author(s):  
Norio Baba ◽  
Norihiko Ichise ◽  
Syunya Watanabe

The tilted beam illumination method is used to improve the resolution comparing with the axial illumination mode. Using this advantage, a restoration method of several tilted beam images covering the full azimuthal range was proposed by Saxton, and experimentally examined. To make this technique more reliable it seems that some practical problems still remain. In this report the restoration was attempted and the problems were considered. In our study, four problems were pointed out for the experiment of the restoration. (1) Accurate beam tilt adjustment to fit the incident beam to the coma-free axis for the symmetrical beam tilting over the full azimuthal range. (2) Accurate measurements of the optical parameters which are necessary to design the restoration filter. Even if the spherical aberration coefficient Cs is known with accuracy and the axial astigmatism is sufficiently compensated, at least the defocus value must be measured. (3) Accurate alignment of the tilt-azimuth series images.


Sign in / Sign up

Export Citation Format

Share Document