The Effects of Phase-Change Materials on Building in Different Climatic Regions: En-ergy Saving and Indoor Thermal Comfort

2019 ◽  
Vol 09 (05) ◽  
pp. 437-446
Author(s):  
帆 李
2017 ◽  
Vol 744 ◽  
pp. 201-206
Author(s):  
Yin Zhang ◽  
Ming Shan Zhang

Integrating phase change materials (PCM) with building envelopes is an effective way to reduce the cooling or heating loads, improve indoor thermal comfort and save building energy consumptions. In this paper, the heat transfer model of building envelopes with shape stabilized PCM is established and the optimal phase change temperature and enthalpy of PCM for internal walls are determined. Moreover, different PCM locations in external walls are compared based on the evaluation index of integrated uncomfortable degree. The results shows that to improve indoor thermal comfort, it is preferable to put the PCM in the middle of external wall. It also indicates that the overall integrated uncomfortable degree in a whole year decreases with increasing thickness of the inserted shape stabilized PCM plate. This work is of great significance in guiding the optimization design of building envelopes with PCM for practical applications.


2018 ◽  
Vol 42 (6) ◽  
pp. 2084-2103 ◽  
Author(s):  
Abuelnuor A. A. Abuelnuor ◽  
Adil A. M. Omara ◽  
Khalid M. Saqr ◽  
Ibrahim H. I. Elhag

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3661 ◽  
Author(s):  
Fabrizio Ascione ◽  
Nicola Bianco ◽  
Rosa Francesca De Masi ◽  
Margherita Mastellone ◽  
Giuseppe Peter Vanoli

The present work concerns the energy retrofit of a public educational building at the University of Molise, located in Termoli, South Italy. The study provides a comparison of the results obtained by different dynamic simulations of passive strategies to improve thermal comfort and energy behavior of the building during the summer regime. Firstly, the building model was calibrated against historical consumption data. Then, a subsequent step involves the technical-economic analysis, by means of building performance simulations, of energy upgrading scenarios, specifically, cool roof and green roof technologies for the horizontal opaque envelope and thermal insulation, vented façade, and phase change materials’ applications for the vertical opaque envelope. Improving the indoor thermal comfort and reducing the thermal energy demand during summertime through innovative solutions will be the primary objective of the present study. The energy efficiency measures are compared from the energy, emissions, costs, and indoor comfort points of view. Phase Change Materials applied to the inner side of the external walls are analyzed in depth and, by varying their melting temperature, optimization of design is performed too. This innovative material, with a melting temperature of 23 °C and a freezing temperature of 21 °C, determines the reduction of summer energy consumption of 11.7% and the increase of summer indoor comfort of 215 h. Even if consolidated, other solutions, like the cool roof, green roof, thermal insulation, and vented façade induce improvements in terms of summer energy saving, and the percentage difference compared to the basic building is less than 2%. For this case study, a Mediterranean building, with construction characteristics typical of the 1990s, traditional passive technologies are not very efficient in improving the energy performance, so the investigation focused on the adoption of innovative solutions such as PCMs, for reducing summer energy demand and improving indoor thermal comfort.


Author(s):  
Yasir Rashid ◽  
Mohammed Ziauddin ◽  
Bobby Mathew ◽  
Fadi Alnaimat

Abstract Integration of phase change materials (PCM) into building elements is explored extensively in the last decade to reduce air-conditioning demand for indoor thermal comfort. The PCM could absorb and release thermal energy as latent heat in a narrow temperature range. Several experimental studies reported energy saving and indoor temperature drop in summer conditions. However, the matter is sparsely researched in the environment of the United Arab Emirates (UAE), a region of high heat flux throughout the year. The current research provides an overview of the integration of PCM in buildings for indoor thermal comfort and energy saving in the UAE. The research highlights the problems of building-integrated photovoltaics (BIPV), e.g. efficiency drop. The significance of the PCM application in the built environment and its research gap is highlighted by reporting all the previous findings on the topic including the application of PCM in glazing, concrete and BIPV.


2021 ◽  
Vol 294 ◽  
pp. 04002
Author(s):  
Kunlun Li

Phase change materials can not only save thermal storage, but also improve residential thermal comfort. In this paper, the finite element software COMSOL is used to simulate the effect of phase change material wallboards on the improvement of residential comfort in the urban village of Guangzhou, China. The results clearly show that the use of phase change material wallboards has a positive influence on the indoor thermal comfort of the urban village.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 41
Author(s):  
Hanae El Fakiri ◽  
Lahoucine Ouhsaine ◽  
Abdelmajid El Bouardi

The thermal dynamic behavior of buildings represents an important aspect of the energy efficiency and thermal comfort of the indoor environment. For this, phase change material (PCM) wallboards integrated into building envelopes play an important role in stabilizing the temperature of the human comfort condition. This article provides an assessment of the thermal behavior of a “bi-zone” building cell, which was built based on high-energy performance (HEP) standards and heated by a solar water heater system through a hydronic circuit. The current study is based on studying the dynamic thermal behavior, with and without implantation of PCMs on envelope structure, using a simplified modeling approach. The evolution of the average air temperature was first evaluated as a major indicator of thermal comfort. Then, an evaluation of the thermal behavior’s dynamic profile was carried out in this study, which allowed for the determination of the PCM rate anticipation in the thermal comfort of the building cell.


2021 ◽  
Vol 13 (3) ◽  
pp. 1257
Author(s):  
Luis Godoy-Vaca ◽  
E. Catalina Vallejo-Coral ◽  
Javier Martínez-Gómez ◽  
Marco Orozco ◽  
Geovanna Villacreses

This work aims to estimate the expected hours of Predicted Medium Vote (PMV) thermal comfort in Ecuadorian social housing houses applying energy simulations with Phase Change Materials (PCMs) for very hot-humid climates. First, a novel methodology for characterizing three different types of social housing is presented based on a space-time analysis of the electricity consumption in a residential complex. Next, the increase in energy demand under climate influences is analyzed. Moreover, with the goal of enlarging the time of thermal comfort inside the houses, the most suitable PCM for them is determined. This paper includes both simulations and comparisons of thermal behavior by means of the PMV methodology of four types of PCMs selected. From the performed energy simulations, the results show that changing the deck and using RT25-RT30 in walls, it is possible to increase the duration of thermal comfort in at least one of the three analyzed houses. The applied PCM showed 46% of comfortable hours and a reduction of 937 h in which the thermal sensation varies from “very hot” to “hot”. Additionally, the usage time of air conditioning decreases, assuring the thermal comfort for the inhabitants during a higher number of hours per day.


2020 ◽  
pp. 014459872096921
Author(s):  
Yanru Li ◽  
Enshen Long ◽  
Lili Zhang ◽  
Xiangyu Dong ◽  
Suo Wang

In the Yangtze River zone of China, the heating operation in buildings is mainly part-time and part-space, which could affect the indoor thermal comfort while making the thermal process of building envelope different. This paper proposed to integrate phase change material (PCM) to building walls to increase the indoor thermal comfort and attenuate the temperature fluctuations during intermittent heating. The aim of this study is to investigate the influence of this kind of composite phase change wall (composite-PCW) on the indoor thermal environment and energy consumption of intermittent heating, and further develop an optimization strategy of intermittent heating operation by using EnergyPlus simulation. Results show that the indoor air temperature of the building with the composite-PCW was 2–3°C higher than the building with the reference wall (normal foamed concrete wall) during the heating-off process. Moreover, the indoor air temperature was higher than 18°C and the mean radiation temperature was above 20°C in the first 1 h after stopping heating. Under the optimized operation condition of turning off the heating device 1 h in advance, the heat release process of the composite-PCW to the indoor environment could maintain the indoor thermal environment within the comfortable range effectively. The composite-PCW could decrease 4.74% of the yearly heating energy consumption compared with the reference wall. The optimization described can provide useful information and guidance for the energy saving of intermittently heated buildings.


Sign in / Sign up

Export Citation Format

Share Document