Simulation on Time-Domain Motion and Control of Pipe-Laying Vessel in Wave

2020 ◽  
Vol 09 (05) ◽  
pp. 369-375
Author(s):  
林青 邓
2020 ◽  
Vol 106 (9-10) ◽  
pp. 3849-3857
Author(s):  
S. Saliba ◽  
J. C. Kirkman-Brown ◽  
L. E. J. Thomas-Seale

AbstractAdditive manufacturing (AM) is expected to generate huge economic revenue by 2025; however, this will only be realised by overcoming the barriers that are preventing its increased adoption to end-use parts. Design for AM (DfAM) is recognised as a multi-faceted problem, exasperated by constraints to creativity, knowledge propagation, insufficiencies in education and a fragmented software pipeline. This study proposes a novel approach to increase the creativity in DfAM. Through comparison between DfAM and in utero human development, the unutilised potential of design through the time domain was identified. Therefore, the aim of the research is to develop a computer-aided manufacturing (CAM) programme to demonstrate design through the time domain, known as Temporal DfAM (TDfAM). This was achieved through a bespoke MATLAB code which applies a linear function to a process parameter, discretised across the additive build. TDfAM was demonstrated through the variation of extrusion speed combined with the infill angle, through the axial and in-plane directions. It is widely accepted in the literature that AM processing parameters change the properties of AM materials. Thus, the application of the TDfAM approach offers the engineer increased creative scope and control, whilst inherently upskilling knowledge, in the design of AM materials.


Author(s):  
Shaea Alkahtani ◽  
Andrew A. Flatt ◽  
Jawad Kanas ◽  
Abdulaziz Aldyel ◽  
Syed Shahid Habib

The aim of this study was to investigate the effect of recreational aerobic physical activity (PA) type and volume on heart rate variability (HRV) in Arab men. This was a retrospective, cross-sectional study, and included men (n = 75, age = 37.6 ± 7.1 years, body mass index (BMI) = 26.7 ± 3.1 kg/m2) who were members of a walking group, cycling group, or were inactive controls. Monthly distances from the past three months were obtained from walking and cycling groups, and the volume of PA was classified into three subgroups (high, moderate, low). HRV was measured using a computerized electrocardiographic data acquisition device. R–R interval recordings were performed while participants rested in a motionless supine position. RR intervals were recorded for 15 minutes, and a five-minute segment with minimal ectopic beats and artifacts was selected for HRV analysis. Time-domain parameters included the mean R–R interval, standard deviation of the mean R–R interval (SDNN), and root-mean-squared difference of successive RR intervals (RMSSD). The frequency-domain parameters included high-frequency power (HF), low-frequency power (LF), and LF to HF ratio (LF/HF). Results showed that there were no significant differences between walking, cycling, and control groups for all HRV parameters. Time-domain analyses based on PA volume showed that age-adjusted SDNN for the high-active group was greater than the low-active group (P = 0.03), and RMSSD for the moderate-active group was greater than the control group (P = 0.009). For the frequency domain, LF for the high-active group was greater than the low-active and control groups (P = 0.006), and HF for the moderate-active group was greater than the low-active group (P = 0.04). These data indicate that walking >150 km per month, or cycling >100 km per month at a speed >20 km/h may be necessary to derive cardiac autonomic benefits from PA among Arab men.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 325 ◽  
Author(s):  
Long Sheng ◽  
Usman Ahmad ◽  
Yongqiang Ye ◽  
Ya-Jun Pan

Conventional time domain passivity control inevitably embodies division. Zero division can occur under a tiny force or velocity, which may be inevitable, and will be the cause of control crash. To avoid the zero division problem and control crash, we propose a switching dissipation controller for guaranteed stability. The parametric design of the proposed approach is discussed. The switching time domain passivity control is then applied to teleoperation and safe operation is achieved. Simulation and experimental results are demonstrated to validate the effectiveness of the proposed control scheme.


1995 ◽  
Vol 31 (12) ◽  
pp. 2165-2172 ◽  
Author(s):  
A. Villeneuve ◽  
P. Mamyshev ◽  
J.U. Kang ◽  
G.I. Stegeman ◽  
J.S. Aitchison ◽  
...  

Author(s):  
N. CHITRA ◽  
TAMIZHARASI. G ◽  
A. SENTHIL KUMAR

The dynamic nature of the distribution network challenges the stability and control effectiveness of the microgrid in autonomous mode. In this paper, nonlinear model of microgrid operating in autonomous mode has been presented. The controller parameters and power sharing coefficients are optimized in case of autonomous mode. The control problem has been formulated as an optimization problem where Ant colony optimization is employed to search for optimal settings of the optimized parameters. In addition, nonlinear time-domain-based objective function has been proposed to minimize the error in the measured power and to enhance the damping characteristics, respectively. Finally, the nonlinear time-domain simulation has been carried out to assess the effectiveness of the proposed controllers under different disturbances and loading conditions. The results show satisfactory performance with efficient damping characteristics of the microgrid considered in this study.


2013 ◽  
Vol 401-403 ◽  
pp. 1596-1599 ◽  
Author(s):  
Chuang Bi ◽  
Zheng Hang Fan ◽  
Yong Xiang ◽  
Jin Gang Hu

This paper addresses the nonlinear dynamics of the Sheppard-Taylor converter to explain the complex behaviour exhibited in the converter under different practical conditions. The bifurcation diagram of the converter is generated to analyze the stability of the system. Several representative waveforms are captured from simulation to illustrate the chaos control of the converter, such as time-domain waveforms, phase portraits, Poincaré section diagrams, and power spectral diagrams.


Sign in / Sign up

Export Citation Format

Share Document