scholarly journals THE ATALANTI ACTIVE FAULT: RE-EVALUATION USING NEW GEOLOGICAL DATA

2004 ◽  
Vol 36 (4) ◽  
pp. 1560 ◽  
Author(s):  
Σ. B. Παυλίδης ◽  
Σ. Βαλκανιώτης ◽  
A. Γκανάς ◽  
Δ. Κεραμυδάς ◽  
Σ. Σμπόρας

The Northern Gulf of Evoia is a region with an intense neotectonic activity, dominated by characteristic and impressive active faults. The only fault in the region which is connected with a strong historical earthquake, is the Atalanti fault, with the well-known earthquake sequence of 1894. For an accurate mapping of the fault trace, the 1894 surface ruptures investigation and the estimation of the area's seismic hazard, there has been made a detailed geological - neotectonic investigation of the Atalanti city area. The results of this investigation show that the Atalanti fault comprises a 20- 30km long fault zone, divided in at least 4 segments: Atalanti, Kiparissi-Almyra, Tragana-Proskyna, Martino and possibly Larymna segment. The maximum earthquake magnitude is estimated in Msmax=6.8, and the recurrence interval, concerning the same magnitude, for Atalanti fault is larger than 1000 years, possibly even more than 2000 years. Paleoseismological trenching in Agios Konstantinos area excludes the connection of this fault with the earthquake sequence of 1894.

2014 ◽  
Vol 56 (6) ◽  
Author(s):  
Ioannis G. Fountoulis ◽  
Spyridon D. Mavroulis

On September 13, 1986, a shallow earthquake (Ms=6.2) struck the city of Kalamata and the surrounding areas (SW Peloponnese, Greece) resulting in 20 fatalities, over 300 injuries, extensive structural damage and many earthquake environmental effects (EEE). The main shock was followed by several aftershocks, the strongest of which occurred two days later (Ms=5.4). The EEE induced by the 1986 Kalamata earthquake sequence include ground subsidence, seismic faults, seismic fractures, rockfalls and hydrological anomalies. The maximum ESI 2007 intensity for the main shock has been evaluated as IX<sub>ESI 2007</sub>, strongly related to the active fault zones and the reactivated faults observed in the area as well as to the intense morphology of the activated Dimiova-Perivolakia graben, which is a 2nd order neotectonic structure located in the SE margin of the Kalamata-Kyparissia mega-graben and bounded by active fault zones. The major structural damage of the main shock was selective and limited to villages founded on the activated Dimiova-Perivolakia graben (IX<sub>EMS-98</sub>) and to the Kalamata city (IX<sub>EMS-98</sub>) and its eastern suburbs (IX<sub>EMS-98</sub>) located at the crossing of the prolongation of two major active fault zones of the affected area. On the contrary, damage of this size was not observed in the surrounding neotectonic structures, which were not activated during this earthquake sequence. It is concluded that both intensity scales fit in with the neotectonic regime of the area. The ESI 2007 scale complemented the EMS-98 seismic intensities and provided a completed picture of the strength and the effects of the September 13, 1986, Kalamata earthquake on the natural and the manmade environment. Moreover, it contributed to a better picture of the earthquake scenario and represents a useful and reliable tool for seismic hazard assessment.


2020 ◽  
Vol 92 (1) ◽  
pp. 437-447
Author(s):  
Yasuhiro Suzuki ◽  
Takashi Nakata ◽  
Mitsuhisa Watanabe ◽  
Sukhee Battulga ◽  
Dangaa Enkhtaivan ◽  
...  

Abstract Destructive large earthquakes occur not only along major plate boundaries but also within the interior of plates. To establish appropriate safety measures, identifying intraplate active faults and the potential magnitude of associated earthquakes is essential before an earthquake occurs. This study was conducted to document the geomorphic expression of a previously unrecognized 50-km-long active fault in Ulaanbaatar, the capital of Mongolia. Mapping of the fault was accomplished using the Advanced Land Observation Satellite elevation dataset provided by Japan Aerospace Exploration Agency (JAXA), a stereo-scope interpretation of CORONA satellite images, the emplacement of trenches across the fault trace, and field study. The Ulaanbaatar fault (UBF) is marked by fault scarps on the surface and left-lateral stream deflections. The fault displaces late Pleistocene deposits and is thus considered to be active. Based on the length of the fault, the UBF is believed to be capable of causing earthquakes with magnitudes greater than M 7 and subsequent associated damage to buildings and heavy causalities within the metropolitan area. We strongly suggest that building resistance requirements in Ulaanbaatar should be revised to mitigate for the potential of extensive seismic damage. The results of this study can be used to revise the seismic hazard map and stipulate a new disaster prevention strategy to improve public safety in Ulaanbaatar. It is also possible that there may be other active faults in the vicinity of Ulaanbaatar, and these require investigation.


2020 ◽  
Vol 110 (4) ◽  
pp. 1427-1456 ◽  
Author(s):  
Jessica Ann Thompson Jobe ◽  
Belle Philibosian ◽  
Colin Chupik ◽  
Timothy Dawson ◽  
Scott E. K. Bennett ◽  
...  

ABSTRACT The July 2019 Ridgecrest earthquakes in southeastern California were characterized as surprising by some, because only ∼35% of the rupture occurred on previously mapped faults. Employing more detailed inspection of pre-event high-resolution topography and imagery in combination with field observations, we document evidence of active faulting in the landscape along the entire fault system. Scarps, deflected drainages, and lineaments and contrasts in topography, vegetation, and ground color demonstrate previous slip on a dense network of orthogonal faults, consistent with patterns of ground surface rupture observed in 2019. Not all of these newly mapped fault strands ruptured in 2019. Outcrop-scale field observations additionally reveal tufa lineaments and sheared Quaternary deposits. Neotectonic features are commonly short (&lt;2  km), discontinuous, and display en echelon patterns along both the M 6.4 and M 7.1 ruptures. These features are generally more prominent and better preserved outside the late Pleistocene lake basins. Fault expression may also be related to deformation style: scarps and topographic lineaments are more prevalent in areas where substantial vertical motion occurred in 2019. Where strike-slip displacement dominated in 2019, the faults are mainly expressed by less prominent tonal and vegetation features. Both the northeast- and northwest-trending active-fault systems are subparallel to regional bedrock fabrics that were established as early as ∼150  Ma, and may be reactivating these older structures. Overall, we estimate that 50%–70% (i.e., an additional 15%–35%) of the 2019 surface ruptures could have been recognized as active faults with detailed inspection of pre-earthquake data. Similar detailed mapping of potential neotectonic features could help improve seismic hazard analyses in other regions of eastern California and elsewhere that likely have distributed faulting or incompletely mapped faults. In areas where faults cannot be resolved as single throughgoing structures, we recommend a zone of potential faulting should be used as a hazard model input.


Sign in / Sign up

Export Citation Format

Share Document