Discovery of Ulaanbaatar Fault: A New Earthquake Threat to the Capital of Mongolia

2020 ◽  
Vol 92 (1) ◽  
pp. 437-447
Author(s):  
Yasuhiro Suzuki ◽  
Takashi Nakata ◽  
Mitsuhisa Watanabe ◽  
Sukhee Battulga ◽  
Dangaa Enkhtaivan ◽  
...  

Abstract Destructive large earthquakes occur not only along major plate boundaries but also within the interior of plates. To establish appropriate safety measures, identifying intraplate active faults and the potential magnitude of associated earthquakes is essential before an earthquake occurs. This study was conducted to document the geomorphic expression of a previously unrecognized 50-km-long active fault in Ulaanbaatar, the capital of Mongolia. Mapping of the fault was accomplished using the Advanced Land Observation Satellite elevation dataset provided by Japan Aerospace Exploration Agency (JAXA), a stereo-scope interpretation of CORONA satellite images, the emplacement of trenches across the fault trace, and field study. The Ulaanbaatar fault (UBF) is marked by fault scarps on the surface and left-lateral stream deflections. The fault displaces late Pleistocene deposits and is thus considered to be active. Based on the length of the fault, the UBF is believed to be capable of causing earthquakes with magnitudes greater than M 7 and subsequent associated damage to buildings and heavy causalities within the metropolitan area. We strongly suggest that building resistance requirements in Ulaanbaatar should be revised to mitigate for the potential of extensive seismic damage. The results of this study can be used to revise the seismic hazard map and stipulate a new disaster prevention strategy to improve public safety in Ulaanbaatar. It is also possible that there may be other active faults in the vicinity of Ulaanbaatar, and these require investigation.

2004 ◽  
Vol 36 (4) ◽  
pp. 1560 ◽  
Author(s):  
Σ. B. Παυλίδης ◽  
Σ. Βαλκανιώτης ◽  
A. Γκανάς ◽  
Δ. Κεραμυδάς ◽  
Σ. Σμπόρας

The Northern Gulf of Evoia is a region with an intense neotectonic activity, dominated by characteristic and impressive active faults. The only fault in the region which is connected with a strong historical earthquake, is the Atalanti fault, with the well-known earthquake sequence of 1894. For an accurate mapping of the fault trace, the 1894 surface ruptures investigation and the estimation of the area's seismic hazard, there has been made a detailed geological - neotectonic investigation of the Atalanti city area. The results of this investigation show that the Atalanti fault comprises a 20- 30km long fault zone, divided in at least 4 segments: Atalanti, Kiparissi-Almyra, Tragana-Proskyna, Martino and possibly Larymna segment. The maximum earthquake magnitude is estimated in Msmax=6.8, and the recurrence interval, concerning the same magnitude, for Atalanti fault is larger than 1000 years, possibly even more than 2000 years. Paleoseismological trenching in Agios Konstantinos area excludes the connection of this fault with the earthquake sequence of 1894.


2009 ◽  
Vol 1193 ◽  
Author(s):  
Hiroyuki Tsuchi ◽  
Taishi Oouchi ◽  
Yoshikazu Ichikawa ◽  
Kazuo Okutsu ◽  
Toru Sasaki

AbstractJapan is located at the converging plate boundaries and is one of the most earthquake-prone zones in the world. In order to ensure the safety of a geological repository against earthquakes, a site with a high possibility of direct destruction by active faults should be excluded, and the relationship between the characteristics of seismic ground motion, subsurface structures, geological disposal system and the propagation characteristics of seismic ground motion should be fully investigated. Earthquake-resistant design based on the latest technology is also very important for ensuring the safety of a geological repository.Following rapid improvement of seismic observation networks after the Hyogoken Nanbu earthquake in 1995, numerous seismic observation records have been obtained in the vicinity of large earthquakes. According to these seismic observations, some phenomena that might affect the safety of a geological disposal system have occurred. Some earthquakes occurred in the areas where active faults had not been identified, while some records showed that seismic motion in the deep underground environment was greater than that at the surface. We have identified the implications from the latest information concerning large earthquakes for the geological disposal program. This study made it clear that detailed investigation incorporating state-of-the-art technologies could reduce the likelihood of missing active faults to an extremely low level and a more practical analysis of seismic ground motion could be achieved by taking the latest information into account.


2008 ◽  
Vol 19 ◽  
pp. 61-65 ◽  
Author(s):  
A. Giocoli ◽  
P. Burrato ◽  
P. Galli ◽  
V. Lapenna ◽  
S. Piscitelli ◽  
...  

Abstract. Electrical Resistivity Tomography (ERT) method has been used to study two tectonically active areas of southern Apennine (Caggiano Faults and Ufita Basin). The main aim of this job was to study the structural setting of the investigated areas, i.e. the geometry of the basins at depth, the location of active faults at surface, and their geometrical characterization. The comparison between ERT and trench/drilling data allowed us to evaluate the efficacy of the ERT method in studying active faults and the structural setting of seismogenic areas. In the Timpa del Vento intermontane basin, high resolution ERT across the Caggiano Fault scarps, with different arrays, electrode spacing (from 1 to 10 m) and penetration depth (from about 5 to 40 m) was carried out. The obtained resistivity models allowed us to locate the fault planes along the hillslope and to gather information at depth, as later confirmed by paleoseismological trenches excavated across the fault trace. In the Ufita River Valley a 3560-m-long ERT was carried out across the basin, joining 11 roll-along multi-channel acquisition system with an electrode spacing of 20 m and reaching an investigation depth of about 170 m. The ERT allowed us to reconstruct the geometry and thickness of the Quaternary deposits filling the Ufita Valley. Our reconstruction of the depositional setting is in agreement with an interpretative geological section based on borehole data.


2009 ◽  
Vol 03 (02) ◽  
pp. 77-88 ◽  
Author(s):  
HASANUDDIN Z. ABIDIN ◽  
HERI ANDREAS ◽  
TERUYUKI KATO ◽  
TAKEO ITO ◽  
IRWAN MEILANO ◽  
...  

Along the Java trench the Australian–Oceanic plate is moving and pushing onto and subducting beneath the Java continental crust at a relative motion of about 70 mm/yr in NNE direction. This subduction-zone process imposed tectonic stresses on the fore-arc region offshore and on the land of Java, thus causing the formation of earthquake fault zones to accommodate the plate movement. Historically, several large earthquakes happened in Java, including West Java. This research use GPS surveys method to study the inter-seismic deformation of three active faults in West Java region (i.e. Cimandiri, Lembang and Baribis faults), and the co-seismic and post-seismic deformation related to the May 2006 Yogyakarta and the July 2006 South Java earthquakes. Based on GPS surveys results it was found that the area around Cimandiri, Lembang and Baribis fault zones have the horizontal displacements of about 1 to 2 cm/yr or less. Further research is however still needed to extract the real inter-seismic deformation of the faults from those GPS-derived displacements. GPS surveys have also estimated that the May 2006 Yogyakarta earthquake was caused by the sinistral movement of the (Opak) fault with horizontal co-seismic deformation that generally was less than 10 cm. The post-seismic horizontal deformation of the July 2006 South Java tsunami earthquake has also been estimated using GPS surveys data. In the first year after the earthquake (2006 to 2007), the post-seismic deformation is generally less than 5 cm; and it becomes generally less than 3 cm in the second year (2007 to 2008).


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 139
Author(s):  
Giancarlo Molli ◽  
Isabelle Manighetti ◽  
Rick Bennett ◽  
Jacques Malavieille ◽  
Enrico Serpelloni ◽  
...  

Based on the review of the available stratigraphic, tectonic, morphological, geodetic, and seismological data, along with new structural observations, we present a reappraisal of the potential seismogenic faults and fault systems in the inner northwest Apennines, Italy, which was the site, one century ago, of the devastating Mw ~6.5, 1920 Fivizzano earthquake. Our updated fault catalog provides the fault locations, as well as the description of their architecture, large-scale segmentation, cumulative displacements, evidence for recent to present activity, and long-term slip rates. Our work documents that a dense network of active faults, and thus potential earthquake fault sources, exists in the region. We discuss the seismogenic potential of these faults, and propose a general tectonic scenario that might account for their development.


2021 ◽  
Author(s):  
Abeer Al-Ashkar ◽  
Antoine Schlupp ◽  
Matthieu Ferry ◽  
Ulziibat Munkhuu

Abstract. We present new constraints from tectonic geomorphology and paleoseismology along the newly discovered Sharkhai fault near the capital city of Mongolia. Detailed observations from high resolution Pleiades satellite images and field investigations allowed us to map the fault in detail, describe its geometry and segmentation, characterize its kinematics, and document its recent activity and seismic behavior (cumulative displacements and paleoseismicity). The Sharkhai fault displays a surface length of ~40 km with a slightly arcuate geometry, and a strike ranging from N42° E to N72° E. It affects numerous drainages that show left-lateral cumulative displacements reaching 57 m. Paleoseismic investigations document the faulting and deposition record for the last ~3000 yr and reveal that the penultimate earthquake (PE) occurred between 1515 ± 90 BC and 945 ± 110 BC and the most recent event (MRE) occurred after 860 ± 85 AD. The resulting time interval of 2080 ± 470 years is the first constraint on the Sharkhai fault for large earthquakes. On the basis of our mapping of the surface rupture and the resulting segmentation analysis, we propose two possible scenarios for large earthquakes with likely magnitudes between 6.4 ± 0.2 and 7.1 ± 0.2. Furthermore, we apply scaling laws to infer coseismic slip values and derive preliminary estimates of long-term slip rates between 0.2 ± 0.2 and 1.0 ± 0.5 mm/y. Finally, we propose that these original observations and results from a newly discovered fault should be taken into account for the seismic hazard assessment for the city of Ulaanbaatar and help build a comprehensive model of active faults in that region.


2014 ◽  
Vol 56 (6) ◽  
Author(s):  
Ioannis G. Fountoulis ◽  
Spyridon D. Mavroulis

On September 13, 1986, a shallow earthquake (Ms=6.2) struck the city of Kalamata and the surrounding areas (SW Peloponnese, Greece) resulting in 20 fatalities, over 300 injuries, extensive structural damage and many earthquake environmental effects (EEE). The main shock was followed by several aftershocks, the strongest of which occurred two days later (Ms=5.4). The EEE induced by the 1986 Kalamata earthquake sequence include ground subsidence, seismic faults, seismic fractures, rockfalls and hydrological anomalies. The maximum ESI 2007 intensity for the main shock has been evaluated as IX<sub>ESI 2007</sub>, strongly related to the active fault zones and the reactivated faults observed in the area as well as to the intense morphology of the activated Dimiova-Perivolakia graben, which is a 2nd order neotectonic structure located in the SE margin of the Kalamata-Kyparissia mega-graben and bounded by active fault zones. The major structural damage of the main shock was selective and limited to villages founded on the activated Dimiova-Perivolakia graben (IX<sub>EMS-98</sub>) and to the Kalamata city (IX<sub>EMS-98</sub>) and its eastern suburbs (IX<sub>EMS-98</sub>) located at the crossing of the prolongation of two major active fault zones of the affected area. On the contrary, damage of this size was not observed in the surrounding neotectonic structures, which were not activated during this earthquake sequence. It is concluded that both intensity scales fit in with the neotectonic regime of the area. The ESI 2007 scale complemented the EMS-98 seismic intensities and provided a completed picture of the strength and the effects of the September 13, 1986, Kalamata earthquake on the natural and the manmade environment. Moreover, it contributed to a better picture of the earthquake scenario and represents a useful and reliable tool for seismic hazard assessment.


2014 ◽  
Vol 56 (6) ◽  
Author(s):  
Nadine Hoffmann

<p><span style="font-family: CMR10; font-size: medium;">The study area at the Lake Ohrid Basin is located on 693 m a.s.l. at the south-western border of the Former Yugoslavian Republic of Macedonia with Albania. It is a suitable location for neotectonic studies. It exhibits a large variety of morphological expressions associated with the seismic activity of the region. Linear bedrock fault scarps give the relief on both sides of the lake a staircase-like appearance; other features are wine-glass shaped valleys and triangular facets. These often short living features are used to identify active faults and to parameterise palaeoearthquakes (slip rates, subsidence and erosion). According to the results of fault scarp profiling a halfgraben shape of the basin is proposed with the west coast being dominated by mass wasting processes most likely triggered by seismic events.</span></p>


Author(s):  
R. Van Dissen ◽  
J. Begg ◽  
Y. Awata

Approximately one year after the Great Hanshin (Kobe) Earthquake, two New Zealand geologists were invited to help with the Geological Survey of Japan's paleoearthquake/active fault studies in the Kobe/Awaji area. Trenches excavated across the Nojima fault, which ruptured during the Great Hanshin Earthquake, showed evidence of past surface rupture earthquakes, with the age of the penultimate earthquake estimated at approximately 2000 years. A trench across the Higashiura fault, located 3-4 km southeast of the Nojima fault, revealed at least two past surface rupture earthquakes. The timing of the older earthquakes is not yet known, but pottery fragments found in the trench constrain the timing of the most recent earthquake at less than 500-600 years. Historical records for this part of Japan suggest that within the last 700 years there has been only one regionally felt earthquake prior to the 1995 Great Hanshin Earthquake, and this was the AD 1596 Keicho Earthquake. It thus seems reasonable to suggest that the Higashiura fault was, at least in part, the source of the AD 1596 Keicho Earthquake.


Sign in / Sign up

Export Citation Format

Share Document