scholarly journals STRESS INTERACTION BETWEEN THRUST FAULTS ALONG THE SW HELLENIC ARC (GREECE)

2018 ◽  
Vol 40 (1) ◽  
pp. 386
Author(s):  
A. Messini ◽  
E. E. Papadimitriou ◽  
V. G. Karakostas ◽  
I. Baskoutas

The occurrence of strong earthquakes (M>6.3) and the evolution of the stress field along the southwestern part of the Hellenic arc since 1959 are examined by the calculation of Coulomb stress changes. The study area is characterized by low angle thrust faults and high seismicity as being part of the subduction interface. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, considering the co-seismic slip during strong events and the slow tectonic stress build-up along major fault segments due to the movements of the tectonic plates. The ruptures are modeled taking into account the strike, dip, and rake appropriate to each event examined. It is evaluated whether the stress changes brought a given earthquake closer to, or farther away from, failure. It was found that the majority of the events (strong and smaller) are located in stress enhanced areas.

2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Athanassios Ganas ◽  
Zafeiria Roumelioti ◽  
Konstantinos Chousianitis

<p>We model the static stress transfer for the May 2012 northern Italy earthquakes, assuming that failure of the crust occurs by shear. This allows the mechanics of the process to be approximated by the Okada (1992) expressions for displacement and strain fields due to a finite rectangular source in an elastic, homogeneous and isotropic half-space. The slip model of the May 20, 2012, earthquake was derived using empirical Green’s functions and a least-squares inversion scheme of source time functions computed from regional broadband seismological data. The derived model is then incorporated into the computation of Coulomb stress change (ΔCFF) to investigate the possibility that the May 20, 2012, M 6.1 event triggered the second earthquake that occurred on May 29, 2012 (M 5.9). We calculate the Coulomb stress changes for both: (a) optimally oriented planes to regional compression; and (b) planes of fixed orientation assuming that E-W striking, south-dipping thrust faults of the May 29, 2012, type of rupture was a candidate for failure. In both cases, we find that the triggering is promoted as the ΔCFF values in the hypocentral area of the May 29, 2012, earthquake are positive (between 0.61-0.74 bar).</p><p> </p>


2022 ◽  
Author(s):  
Muhammad Taufiq Rafie ◽  
David P. Sahara ◽  
Phil R. Cummins ◽  
Wahyu Triyoso ◽  
Sri Widiyantoro

Abstract The seismically active Sumatra subduction zone has generated some of the largest earthquakes in the instrumental record, and both historical accounts and paleogeodetic coral studies indicate such activity has historical recorded megathrust earthquakes and transferred stress to the surrounding, including the Great Sumatran Fault (GSF). Therefore, evaluating the stress transfer from these large subduction earthquakes could delineate the highly stressed area as potential-earthquake region along the GSF. In this study, we investigated eight megathrust earthquakes from 1797 to 2010 and resolved the accumulated Coulomb stress changes onto the 18 segments along the GSF. Additionally, we also estimated the rate of tectonic stress on the GSF segments which experienced large earthquake using the case of: (1) no sliver movement and (2) with sliver movement. Based on the historical stress changes of large earthquakes and the increase in tectonic stress rate, we analysed the historical stress changes time evolution on the GSF. The Coulomb stress accumulation of megathrust earthquakes between 1797-1907 increase the stress changes mainly on the southern part of GSF which followed by four major events between 1890-1943. The estimation of tectonic stress rates using case (1) produces low rate and long recurrence intervals which implies that the megathrust earthquakes plays an important role in allowing the GSF earthquake to occur. When implementing the arc-parallel sliver movement of case (2) to the calculation, the tectonic stress rates is 9 to 58 times higher than case (1) of no sliver movement. The observed slip rate of 15-16 mm/yr at the GSF is consistent with the recurrence interval for full-segment rupture of 100-200 years obtained from case (2). This suggests that the GSF earthquake is more controlled by the rapid arc-parallel forearc sliver motion. Furthermore, the analysis of stress changes time evolution model shows that some segments such as Tripa (North and South), Angkola, Musi and Manna appear to be brought back in their seismic cycles since these segments have experienced full-segment rupture and likely locked, increasing their earthquake hazard potentials.


2001 ◽  
Vol 34 (4) ◽  
pp. 1539
Author(s):  
E. E. PAPADIMITRIOU ◽  
V. G. KARAKOSTAS ◽  
A. B. BABA

Coulomb stress changes (ACFF)were calculated assuming that earthquakes can be modelled as static dislocations in an elastic half-space, and taking into account the coseismic slip in strong earthquakes. The stress change calculations were performed for strike, dip, and rake appropriate to the strong events considered. We evaluate if these chosen earthquakes brought a given strong subsequent event closer to, or farther from, failure. It was found that each of the subsequent strong events occurred in regions of increased calculated Coulomb stress before their occurrence. Moreover, the majority of smaller aftershocks also were located in areas of positive ACFF. This indicates the probable triggering of the latter events, the foci of which are situated at nearby faults or fault segments.


Author(s):  
R. Alac Barut ◽  
J. Trinder ◽  
C. Rizos

On August 17&lt;sup&gt;th&lt;/sup&gt; 1999, a M&lt;sub&gt;w&lt;/sub&gt; 7.4 earthquake struck the city of Izmit in the north-west of Turkey. This event was one of the most devastating earthquakes of the twentieth century. The epicentre of the Izmit earthquake was on the North Anatolian Fault (NAF) which is one of the most active right-lateral strike-slip faults on earth. However, this earthquake offers an opportunity to study how strain is accommodated in an inter-segment region of a large strike slip fault. In order to determine the Izmit earthquake post-seismic effects, the authors modelled Coulomb stress changes of the aftershocks, as well as using the deformation measurement techniques of Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS). The authors have shown that InSAR and GNSS observations over a time period of three months after the earthquake combined with Coulomb Stress Change Modelling can explain the fault zone expansion, as well as the deformation of the northern region of the NAF. It was also found that there is a strong agreement between the InSAR and GNSS results for the post-seismic phases of investigation, with differences less than 2mm, and the standard deviation of the differences is less than 1mm.


2014 ◽  
Vol 971-973 ◽  
pp. 2172-2175
Author(s):  
Dong Ning Lei ◽  
Jian Chao Wu ◽  
Yong Jian Cai

TheCoulomb stress changes are usually adopted to make analysis on faultinteractions and stress triggering. This paper mainly deals with Coulomb stresschange of mainshock and affect on aftershocks. We preliminarily conclude thatthe mainshock produce Coulomb stress change on aftershocks most behavingpositive and triggered them. By calculating it is obvious that more aftershocksfell into stress increasing area and triggering percentage is up to ninety ofmaximum and seventy-one of minimum.


2015 ◽  
Vol 173 (1) ◽  
pp. 49-72 ◽  
Author(s):  
K. M. Leptokaropoulos ◽  
E. E. Papadimitriou ◽  
B. Orlecka–Sikora ◽  
V. G. Karakostas

Sign in / Sign up

Export Citation Format

Share Document