Functional classification of proteins using mass spectrometry data and exploration of their frequency of identification in proteomic analysis

2009 ◽  
Author(s):  
Panagiotis Bougioukos
2002 ◽  
Vol 13 (11) ◽  
pp. 4100-4109 ◽  
Author(s):  
Alexander Scherl ◽  
Yohann Couté ◽  
Catherine Déon ◽  
Aleth Callé ◽  
Karine Kindbeiter ◽  
...  

The notion of a “plurifunctional” nucleolus is now well established. However, molecular mechanisms underlying the biological processes occurring within this nuclear domain remain only partially understood. As a first step in elucidating these mechanisms we have carried out a proteomic analysis to draw up a list of proteins present within nucleoli of HeLa cells. This analysis allowed the identification of 213 different nucleolar proteins. This catalog complements that of the 271 proteins obtained recently by others, giving a total of ∼350 different nucleolar proteins. Functional classification of these proteins allowed outlining several biological processes taking place within nucleoli. Bioinformatic analyses permitted the assignment of hypothetical functions for 43 proteins for which no functional information is available. Notably, a role in ribosome biogenesis was proposed for 31 proteins. More generally, this functional classification reinforces the plurifunctional nature of nucleoli and provides convincing evidence that nucleoli may play a central role in the control of gene expression. Finally, this analysis supports the recent demonstration of a coupling of transcription and translation in higher eukaryotes.


2010 ◽  
Vol 28 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Noelle M Griffin ◽  
Jingyi Yu ◽  
Fred Long ◽  
Phil Oh ◽  
Sabrina Shore ◽  
...  

2010 ◽  
Vol 73 (13-15) ◽  
pp. 2317-2331 ◽  
Author(s):  
Pengyi Yang ◽  
Zili Zhang ◽  
Bing B. Zhou ◽  
Albert Y. Zomaya

2020 ◽  
Vol 36 (16) ◽  
pp. 4423-4431
Author(s):  
Wenbo Xu ◽  
Yan Tian ◽  
Siye Wang ◽  
Yupeng Cui

Abstract Motivation The classification of high-throughput protein data based on mass spectrometry (MS) is of great practical significance in medical diagnosis. Generally, MS data are characterized by high dimension, which inevitably leads to prohibitive cost of computation. To solve this problem, one-bit compressed sensing (CS), which is an extreme case of quantized CS, has been employed on MS data to select important features with low dimension. Though enjoying remarkably reduction of computation complexity, the current one-bit CS method does not consider the unavoidable noise contained in MS dataset, and does not exploit the inherent structure of the underlying MS data. Results We propose two feature selection (FS) methods based on one-bit CS to deal with the noise and the underlying block-sparsity features, respectively. In the first method, the FS problem is modeled as a perturbed one-bit CS problem, where the perturbation represents the noise in MS data. By iterating between perturbation refinement and FS, this method selects the significant features from noisy data. The second method formulates the problem as a perturbed one-bit block CS problem and selects the features block by block. Such block extraction is due to the fact that the significant features in the first method usually cluster in groups. Experiments show that, the two proposed methods have better classification performance for real MS data when compared with the existing method, and the second one outperforms the first one. Availability and implementation The source code of our methods is available at: https://github.com/tianyan8023/OBCS. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document