scholarly journals Predator and prey functional traits: understanding the adaptive machinery driving predator–prey interactions

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1767 ◽  
Author(s):  
Oswald Schmitz

Predator–prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator–prey relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator–prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator–prey interaction, causing predator and prey to adapt their traits—through phenotypically plastic or rapid evolutionary responses—and the nature of their interaction. Research shows that examining predator–prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator–prey interactions observed in different ecological contexts.

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
W. Daniel Kissling ◽  
Henrik Balslev ◽  
William J. Baker ◽  
John Dransfield ◽  
Bastian Göldel ◽  
...  

Abstract Plant traits are critical to plant form and function —including growth, survival and reproduction— and therefore shape fundamental aspects of population and ecosystem dynamics as well as ecosystem services. Here, we present a global species-level compilation of key functional traits for palms (Arecaceae), a plant family with keystone importance in tropical and subtropical ecosystems. We derived measurements of essential functional traits for all (>2500) palm species from key sources such as monographs, books, other scientific publications, as well as herbarium collections. This includes traits related to growth form, stems, armature, leaves and fruits. Although many species are still lacking trait information, the standardized and global coverage of the data set will be important for supporting future studies in tropical ecology, rainforest evolution, paleoecology, biogeography, macroecology, macroevolution, global change biology and conservation. Potential uses are comparative eco-evolutionary studies, ecological research on community dynamics, plant-animal interactions and ecosystem functioning, studies on plant-based ecosystem services, as well as conservation science concerned with the loss and restoration of functional diversity in a changing world.


2012 ◽  
Vol 4 (1) ◽  
Author(s):  
Arief Rachman ◽  
Nurul Fitriya

<p>The dynamics in zooplankton abundance were regulated by changes in water physical-chemical parameters and interaction with biotic factors. In this research we examined the relationship between zooplankton community dynamic and important biotic factors, such as predation and food availability, in Jakarta bay. Plankton samplings were done in 10 sampling stations in Jakarta bay, from July to November 2009. Zooplankton samples were collected using horizontal towing method with NORPAC plankton net (mesh size 300 μm). Salinity, water depth, water temperature, and water transparency were measured. Phytoplankton samples were also collected with the same method as zooplankton, using Kitahara plankton net (mesh size 80 μm). Zooplankton taxas were grouped into two groups, the prey and predatory zooplankton. The results showed that there were two different patterns in zooplankton groups dynamic i.e., the single and double peak. The abundance peak in most zooplankton groups, such as copepods, cirripeds, luciferids, and tunicates, were induced by the high food availability during the phytoplankton bloom in August. The high abundance of prey zooplankton groups in August was responded by the predatory zooplankton groups, resulting in high abundance of predatory zooplankton in adjacent month. The high abundance of ctenophores and chordates (fish larvae) were suggested as the main factor for the low abundance of other zooplankton in September. Physical and chemical factors were not the regulating factors due to the stability of those factors during this research period. Thus we concluded that food availability and predator-prey interaction were the main factors which regulate zooplankton community dynamics in Jakarta bay.</p><p>Keywords: predator-prey interaction, zooplankton, abundance peak, food availability, phytoplankton bloom</p>


2012 ◽  
Vol 4 (1) ◽  
Author(s):  
Arief Rachman ◽  
Nurul Fitriya

The dynamics in zooplankton abundance were regulated by changes in water physical-chemical parameters and interaction with biotic factors. In this research we examined the relationship between zooplankton community dynamic and important biotic factors, such as predation and food availability, in Jakarta bay. Plankton samplings were done in 10 sampling stations in Jakarta bay, from July to November 2009. Zooplankton samples were collected using horizontal towing method with NORPAC plankton net (mesh size 300 μm). Salinity, water depth, water temperature, and water transparency were measured. Phytoplankton samples were also collected with the same method as zooplankton, using Kitahara plankton net (mesh size 80 μm). Zooplankton taxas were grouped into two groups, the prey and predatory zooplankton. The results showed that there were two different patterns in zooplankton groups dynamic i.e., the single and double peak. The abundance peak in most zooplankton groups, such as copepods, cirripeds, luciferids, and tunicates, were induced by the high food availability during the phytoplankton bloom in August. The high abundance of prey zooplankton groups in August was responded by the predatory zooplankton groups, resulting in high abundance of predatory zooplankton in adjacent month. The high abundance of ctenophores and chordates (fish larvae) were suggested as the main factor for the low abundance of other zooplankton in September. Physical and chemical factors were not the regulating factors due to the stability of those factors during this research period. Thus we concluded that food availability and predator-prey interaction were the main factors which regulate zooplankton community dynamics in Jakarta bay.Keywords: predator-prey interaction, zooplankton, abundance peak, food availability, phytoplankton bloom


Author(s):  
Dominique Caron ◽  
Luigi Maiorano ◽  
Wilfried Thuiller ◽  
Laura J. Pollock

While species interactions are fundamental for linking biodiversity to ecosystem functioning and for conservation, large-scale empirical data are lacking for most species and ecosystems. Accumulating evidence suggests that trophic interactions are predictable from available functional trait information, but we have yet to understand how well we can predict interactions across large spatial scales and food webs. Here, we built a model predicting predator-prey interactions based on functional traits for European vertebrates. We found that even models calibrated with very few known interactions (100 out of 71k) estimated the entire food web reasonably well. However, predators were easier to predict than prey, with prey in some clades being particularly difficult to predict (e.g., fowls and storks). Local food web connectance was also consistently over-estimated. Our results demonstrate the potential for filling gaps in sparse food webs, an important step towards a better description of biodiversity with strong implications for conservation planning.


Author(s):  
Xavier Lambin

The dependency of mustelid demographic rates on prey abundance has the potential to cause a strong coupling between predator-prey populations. Data on mustelid dynamics show that such strong reciprocal interactions only materialise in some restricted conditions. Bite-size mustelid predators searching for scarce, depleted prey expose themselves to increased risk of predation by larger predators of small mammal that are themselves searching for similar prey species. As voles or muskrats become scarcer, weasels and mink searching for prey over larger areas become increasingly exposed to intra-guild predation, unless they operate in a habitat refuge such as the sub-nivean space. Where larger predators are sufficiently abundant or exert year-round predation pressure on small mustelids, their impact on mustelids may impose biological barrier to dispersal that are sufficient to weaken the coupling between small mustelids and their rodent prey, and thus impose a degree of top down limitation on mustelids.


1989 ◽  
Vol 12 (4) ◽  
pp. 239-245,231 ◽  
Author(s):  
Minako KOGA ◽  
Takeshi SEGUCHI ◽  
Tadahiro MORI ◽  
Yuhei INAMORI ◽  
Ryuichi SUDO

Sign in / Sign up

Export Citation Format

Share Document