scholarly journals Reducing the Eltonian shortfall with trophic interaction models

Author(s):  
Dominique Caron ◽  
Luigi Maiorano ◽  
Wilfried Thuiller ◽  
Laura J. Pollock

While species interactions are fundamental for linking biodiversity to ecosystem functioning and for conservation, large-scale empirical data are lacking for most species and ecosystems. Accumulating evidence suggests that trophic interactions are predictable from available functional trait information, but we have yet to understand how well we can predict interactions across large spatial scales and food webs. Here, we built a model predicting predator-prey interactions based on functional traits for European vertebrates. We found that even models calibrated with very few known interactions (100 out of 71k) estimated the entire food web reasonably well. However, predators were easier to predict than prey, with prey in some clades being particularly difficult to predict (e.g., fowls and storks). Local food web connectance was also consistently over-estimated. Our results demonstrate the potential for filling gaps in sparse food webs, an important step towards a better description of biodiversity with strong implications for conservation planning.

Author(s):  
Chantal Hutchison ◽  
Frédéric Guichard ◽  
Pierre Legagneux ◽  
Gilles Gauthier ◽  
Joël Bêty ◽  
...  

Models incorporating seasonality are necessary to fully assess the impact of global warming on Arctic communities. Seasonal migrations are a key component of Arctic food webs that still elude current theories predicting a single community equilibrium. We develop a multi-season model of predator–prey dynamics using a hybrid dynamical systems framework applied to a simplified tundra food web (lemming–fox–goose–owl). Hybrid systems models can accommodate multiple equilibria, which is a basic requirement for modelling food webs whose topology changes with season. We demonstrate that our model can generate multi-annual cycling in lemming dynamics, solely from a combined effect of seasonality and state-dependent behaviour. We compare our multi-season model to a static model of the predator–prey community dynamics and study the interactions between species. Interestingly, including seasonality reveals indirect interactions between migrants and residents not captured by the static model. Further, we find that the direction and magnitude of interactions between two species are not necessarily accurate using only summer time-series. Our study demonstrates the need for the development of multi-season models and provides the tools to analyse them. Integrating seasonality in food web modelling is a vital step to improve predictions about the impacts of climate change on ecosystem functioning. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning’.


2016 ◽  
Vol 371 (1694) ◽  
pp. 20150268 ◽  
Author(s):  
Dominique Gravel ◽  
Camille Albouy ◽  
Wilfried Thuiller

There is a growing interest in using trait-based approaches to characterize the functional structure of animal communities. Quantitative methods have been derived mostly for plant ecology, but it is now common to characterize the functional composition of various systems such as soils, coral reefs, pelagic food webs or terrestrial vertebrate communities. With the ever-increasing availability of distribution and trait data, a quantitative method to represent the different roles of animals in a community promise to find generalities that will facilitate cross-system comparisons. There is, however, currently no theory relating the functional composition of food webs to their dynamics and properties. The intuitive interpretation that more functional diversity leads to higher resource exploitation and better ecosystem functioning was brought from plant ecology and does not apply readily to food webs. Here we appraise whether there are interpretable metrics to describe the functional composition of food webs that could foster a better understanding of their structure and functioning. We first distinguish the various roles that traits have on food web topology, resource extraction (bottom-up effects), trophic regulation (top-down effects), and the ability to keep energy and materials within the community. We then discuss positive effects of functional trait diversity on food webs, such as niche construction and bottom-up effects. We follow with a discussion on the negative effects of functional diversity, such as enhanced competition (both exploitation and apparent) and top-down control. Our review reveals that most of our current understanding of the impact of functional trait diversity on food web properties and functioning comes from an over-simplistic representation of network structure with well-defined levels. We, therefore, conclude with propositions for new research avenues for both theoreticians and empiricists.


2020 ◽  
Vol 6 (20) ◽  
pp. eaaz4880 ◽  
Author(s):  
D. M. Walters ◽  
W.F. Cross ◽  
T.A. Kennedy ◽  
C.V. Baxter ◽  
R.O. Hall ◽  
...  

Mercury (Hg) biomagnification in aquatic food webs is a global concern; yet, the ways species traits and interactions mediate these fluxes remain poorly understood. Few pathways dominated Hg flux in the Colorado River despite large spatial differences in food web complexity, and fluxes were mediated by one functional trait, predation resistance. New Zealand mudsnails are predator resistant and a trophic dead end for Hg in food webs we studied. Fishes preferred blackflies, which accounted for 56 to 80% of Hg flux to fishes, even where blackflies were rare. Food web properties, i.e., match/mismatch between insect production and fish consumption, governed amounts of Hg retained in the river versus exported to land. An experimental flood redistributed Hg fluxes in the simplified tailwater food web, but not in complex downstream food webs. Recognizing that species traits, species interactions, and disturbance mediate contaminant exposure can improve risk management of linked aquatic-terrestrial ecosystems.


2021 ◽  
Author(s):  
Kate Wootton ◽  
Alva Curtsdotter ◽  
Tomas Jonsson ◽  
H.T. Banks ◽  
Tomas Roslin ◽  
...  

Food webs map feeding interactions among species, providing a valuable tool for understanding and predicting  community dynamics. Trait-based approaches to food webs are increasingly popular, using e.g. species’ body sizes to parameterize dynamic models. Although partly successful, models based on body size often cannot fully recover observed dynamics, suggesting that size alone is not enough. For example, differences in species’ use of microhabitat or non-consumptive effects of other predators may affect dynamics in ways not captured by body size. Here, we report on the results of a pre-registered study (Laubmeier et al. 2018) where we developed a dynamic food-web model incorporating body size, microhabitat use, and non-consumptive predator effects and used simulations to optimize the experimental design. Now, after performing the mesocosm experiment to generate empirical time-series of insect herbivore and predator abundance dynamics, we use the inverse method to determine parameter values of the dynamic model. We compare four alternative models with and without microhabitat use and non-consumptive predator effects. The four models achieve similar fits to observed data on herbivore population dynamics, but build on different estimates for the same parameters. Thus, each model predicts substantially different effects of each predator on hypothetical new prey species. These findings highlight the imperative of understanding the mechanisms behind species interactions, and the relationships mediating the effects of traits on trophic interactions. In particular, we believe that increased understanding of the estimates of optimal predator-prey body-size ratios and maximum feeding rates will improve future predictions. In conclusion, our study demonstrates how iterative cycling between theory, data and experiment may be needed to hone current insights into how traits affect food-web dynamics.


2016 ◽  
Author(s):  
◽  
Thomas Lee Anderson

The influence of biotic and abiotic factors on species interactions and overall community structure has long interested ecologists. Despite a legacy of interest, there is still ambiguity into the role of biotic and abiotic factors due to highly nuanced, complex networks of interactions that are difficult to comprehend. Yet, understanding how such nuances is an essential goal to determine how they affect population and community structure. Thus, the goal of my dissertation was to understand how multiple biotic and abiotic mechanisms alter interactions among larval stages of two pond-breeding salamanders. Larval stages of pond-breeding salamanders represent an excellent system for understanding how species interactions vary along abiotic and biotic gradients. Intra-and interspecific interactions are frequently determined by size differences among individuals, where larger larvae are predators of smaller larvae and can out-compete them for shared resources. However, when size differences are minimized, only competition occurs. Such conjoined competition and predation is termed intraguild predation, and is a common interaction in many taxa. The factors that determine size differences among individuals (both within and between species) are critical towards to determining both the type of interaction, as well as the strength of such interactions. The focal species I used were the ringed salamander (Ambystoma annulatum) and spotted salamander (A. maculatum). The former breeds earlier than the latter, creating a larval size advantage which results in predation as the dominant interaction between species. However, factors that influence growth rates of ringed salamanders could result in minimized size differences, resulting in a change to the strength or type of interaction that occurs. For my dissertation, I experimentally investigated three different processes that were expected to affect the relative importance of predation and competition: density dependence, food web structure, and phenological shifts. In my first chapter, I tested whether the density of ringed salamanders influenced their growth rates to such a degree that the interaction type with spotted salamanders would switch from predation to competition. I found that increased intraspecific competition in ringed salamanders reduced their body size and increased their larval period length. However, intraspecific competition did not reduce their size to such a degree that predation on spotted salamanders was precluded. Spotted salamanders showed decreased survival and increased size at higher predator densities, indicative of thinning effects. The period of overlap in ponds also increased at higher predator densities, resulting in a larger temporal window for interactions to occur. In my second chapter, I tested how six different top predator food webs would influence intraguild predation between ringed and spotted salamanders. I also tested whether food web configuration would be simultaneously impacted by increased habitat complexity. I found that ringed salamander body size and survival were unaffected by habitat complexity, and that only certain combinations of predators affected these demographic rates. Spotted salamander body size and survival showed positive and negative relationships with ringed salamander survival, but the strength of these relationships varied depending on the predator and habitat complexity treatment. Thus, pairwise interactions may not exemplify typical interactions when embedded in more complex food webs with other predators. For my third chapter, I investigated whether phenological shifts in both the ringed and spotted salamanders, simultaneous to density dependence in the ringed salamander would influence the type and strength of their interactions. I found ringed salamander survival varied with phenological shifts but only when at high intraspecific densities. Spotted salamanders were relatively unaffected by phenological shifts, and that their interactions were, similar to the previous chapters, influenced primarily by survival of ringed salamanders. As phenological shifts are predicted for many species with climate change, this study highlights that not all species interactions will be subsequently affected, and that other underlying factors (e.g. density dependence) may be more important. Thus, the most important findings of my dissertation include 1) predator density can be a dominant factor in species interactions, 2) pairwise interactions may change when embedded in different habitats or food webs in non-intuitive ways, and 3) simultaneously testing multiple mechanisms can elicit a greater understanding of the relative importance of different ecological processes.


2017 ◽  
Author(s):  
Linhai Zhu ◽  
Jonathan S Lefcheck ◽  
Bojie Fu

The use of functional traits has increased exponentially in ecology, particularly in attempting to understand plant strategies and ecosystem functioning. This popularity has led to many proposed definitions of functional traits, which in turn has informed recommendations about how to gather, summarize, and analyze trait data. In this paper, we revisit the definition of the functional trait from the perspective of physiological, community and ecosystem ecology, and reason towards a broad, unrestrictive, and applicable definition. We then outline the conceptual mismatch between this definition and the popular practice of summarizing trait information using unconstrained ordination . We make specific suggestions about alternative methods to gain a mechanistic insight into how traits translate into functions. We hope this paper will improve our ability to move towards an ecological synthesis using a trait-based approach.


2015 ◽  
Author(s):  
Jonathan S Lefcheck ◽  
J. Emmett Duffy

The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on general linear mixed effects models. Combining inferences from 8 traits into a single multivariate index increased prediction accuracy of these models relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context.


2015 ◽  
Author(s):  
Jonathan S Lefcheck ◽  
J. Emmett Duffy

The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori manipulated functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within two levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on general linear mixed effects models. Combining inferences from 8 traits into a single multivariate index increased prediction accuracy of these properties relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within and between trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context.


2018 ◽  
Author(s):  
Nicolas F. St-Gelais ◽  
Richard J. Vogt ◽  
Paul A. del Giorgio ◽  
Beatrix E. Beisner

AbstractStrong trophic interactions link primary producers (phytoplankton) and consumers (zooplankton) in lakes. However, the influence of such interactions on the biogeographical distribution of the taxa and functional traits of planktonic organisms in lakes has never been explicitly tested. To better understand the spatial distribution of these two major aquatic groups, we related the distributions of their taxa and functional traits across boreal lakes (104 for zooplankton and 48 for phytoplankton) to a common suite of environmental and spatial factors. We directly tested the degree of coupling in their taxonomic and functional distributions across the subset of common lakes. Phytoplankton functional composition responded mainly to properties related to water quality, while zooplankton composition responded more strongly to lake morphometry. Overall, the spatial distributions of phytoplankton and zooplankton were coupled at taxonomic and functional levels but after controlling for the effect of environmental drivers (water quality and morphometry) and dispersal limitation, no residual coupling could be attributed to trophic interactions. The lack of support for the role of trophic interactions as a driver coupling the distribution of plankton communities across boreal lakes indicates that taxon-specific and functional trait driven ecological interactions may not modulate large-scale spatial patterns of phytoplankton and zooplankton in a coordinated way. Our results point to community structuring forces beyond the phytoplankton-zooplankton trophic coupling itself, and which are specific to each trophic level: fish predation for zooplankton and resources for phytoplankton.


2021 ◽  
Vol 17 (4) ◽  
Author(s):  
Jean P. Gibert ◽  
Daniel J. Wieczynski

Predicting food web structure in future climates is a pressing goal of ecology. These predictions may be impossible without a solid understanding of the factors that structure current food webs. The most fundamental aspect of food web structure—the relationship between the number of links and species—is still poorly understood. Some species interactions may be physically or physiologically ‘forbidden'—like consumption by non-consumer species—with possible consequences for food web structure. We show that accounting for these ‘forbidden interactions' constrains the feasible link-species space, in tight agreement with empirical data. Rather than following one particular scaling relationship, food webs are distributed throughout this space according to shared biotic and abiotic features. Our study provides new insights into the long-standing question of which factors determine this fundamental aspect of food web structure.


Sign in / Sign up

Export Citation Format

Share Document