scholarly journals POTENTIAL ROLES OF BIOTIC FACTORS IN REGULATING ZOOPLANKTON COMMUNITY DYNAMICS IN JAKARTA BAY SHALLOW WATER COASTAL ECOSYSTEM

2012 ◽  
Vol 4 (1) ◽  
Author(s):  
Arief Rachman ◽  
Nurul Fitriya

<p>The dynamics in zooplankton abundance were regulated by changes in water physical-chemical parameters and interaction with biotic factors. In this research we examined the relationship between zooplankton community dynamic and important biotic factors, such as predation and food availability, in Jakarta bay. Plankton samplings were done in 10 sampling stations in Jakarta bay, from July to November 2009. Zooplankton samples were collected using horizontal towing method with NORPAC plankton net (mesh size 300 μm). Salinity, water depth, water temperature, and water transparency were measured. Phytoplankton samples were also collected with the same method as zooplankton, using Kitahara plankton net (mesh size 80 μm). Zooplankton taxas were grouped into two groups, the prey and predatory zooplankton. The results showed that there were two different patterns in zooplankton groups dynamic i.e., the single and double peak. The abundance peak in most zooplankton groups, such as copepods, cirripeds, luciferids, and tunicates, were induced by the high food availability during the phytoplankton bloom in August. The high abundance of prey zooplankton groups in August was responded by the predatory zooplankton groups, resulting in high abundance of predatory zooplankton in adjacent month. The high abundance of ctenophores and chordates (fish larvae) were suggested as the main factor for the low abundance of other zooplankton in September. Physical and chemical factors were not the regulating factors due to the stability of those factors during this research period. Thus we concluded that food availability and predator-prey interaction were the main factors which regulate zooplankton community dynamics in Jakarta bay.</p><p>Keywords: predator-prey interaction, zooplankton, abundance peak, food availability, phytoplankton bloom</p>

2012 ◽  
Vol 4 (1) ◽  
Author(s):  
Arief Rachman ◽  
Nurul Fitriya

The dynamics in zooplankton abundance were regulated by changes in water physical-chemical parameters and interaction with biotic factors. In this research we examined the relationship between zooplankton community dynamic and important biotic factors, such as predation and food availability, in Jakarta bay. Plankton samplings were done in 10 sampling stations in Jakarta bay, from July to November 2009. Zooplankton samples were collected using horizontal towing method with NORPAC plankton net (mesh size 300 μm). Salinity, water depth, water temperature, and water transparency were measured. Phytoplankton samples were also collected with the same method as zooplankton, using Kitahara plankton net (mesh size 80 μm). Zooplankton taxas were grouped into two groups, the prey and predatory zooplankton. The results showed that there were two different patterns in zooplankton groups dynamic i.e., the single and double peak. The abundance peak in most zooplankton groups, such as copepods, cirripeds, luciferids, and tunicates, were induced by the high food availability during the phytoplankton bloom in August. The high abundance of prey zooplankton groups in August was responded by the predatory zooplankton groups, resulting in high abundance of predatory zooplankton in adjacent month. The high abundance of ctenophores and chordates (fish larvae) were suggested as the main factor for the low abundance of other zooplankton in September. Physical and chemical factors were not the regulating factors due to the stability of those factors during this research period. Thus we concluded that food availability and predator-prey interaction were the main factors which regulate zooplankton community dynamics in Jakarta bay.Keywords: predator-prey interaction, zooplankton, abundance peak, food availability, phytoplankton bloom


2011 ◽  
Vol 101 (1-2) ◽  
pp. 75-84 ◽  
Author(s):  
Juliana D Dias ◽  
Érica M Takahashi ◽  
Natália F Santana ◽  
Cláudia C Bonecker

We investigated the impact of fish cage culture on the zooplankton community structure in a tropical reservoir. We hypothesized that community abundance is greater near cages and increases over time due to the increase in food availability. Samplings were performed near, upstream and downstream from net cages, and before and after net cage installation. The abundance of zooplankton increased 15 days after the experiment was set up, followed by a reduction and finally increased. Rotifer abundance showed significant differences among sites (p<0.05) and sampling periods (p<0.001). Significant differences were also observed in total zooplankton and cladoceran abundance (p<0.001). The spatial and temporal variation of the physical and chemical variables were indirectly correlated with the structure and dynamic of the zooplankton community, as they indicated the primary production in the environment. Our hypothesis was rejected, since the zooplankton was abundant at the reference site. Only rotifers showed higher abundance near cages, due to the influence of food availability. Community dynamics during the experiment was also correlated to food availability. Our results suggest an impact of fish farming on the zooplankton community.


2013 ◽  
Vol 14 (3) ◽  
pp. 32 ◽  
Author(s):  
E. CHALKIA ◽  
G. KEHAYIAS

A one year investigation of the zooplankton community composition and dynamics in Lake Οzeros (western Greece) revealed 25 invertebrate species (16 rotifers, three copepods, five cladocerans and one mollusc larva). The mean zooplankton abundance fluctuated between 59.4 to 818 ind l-1, having maximum values in spring. The species composition and seasonal variation do not differentiate Lake Ozeros from the nearby lakes. The presence of the dominant calanoid copepod Eudiaptomus drieschi and some of the rotifer species recorded are characteristics of either oligo- or eutrophic lakes. According to the trophic state index (TSI) Lake Ozeros is a meso-eutrophic ecosystem, in which the eutrophic character was possibly the result of the high charge with phosphorus (being raised by 28.9 % in comparison to previous decades), which came into the lake via the surrounding agricultural cultivations and mainly the pig-raising activities. In contrast, the concentrations of ΝΟ3, ΝΟ2 and NH4 have considerably decreased possibly due to the termination of the tobacco cultivations around the lake during the last years. The novel information on the abiotic and especially the biotic elements of Lake Ozeros provided by the present study can contribute to the effective management of this aquatic ecosystem in the future.


2013 ◽  
Vol 5 (1) ◽  
Author(s):  
Hikmah Thoha ◽  
Arief Rachman ◽  
Arief Rachman

<p>Banggai Islands waters are mixing area between Banda Sea and Makassar Sea, thus resulting in the existence of many unique marine ecosystems. This conditon might also lead to the occurrence of unique and specific plankton community in the oceanic ecosystem of Banggai Islands. This research was conducted in 26 June to 8 July using Baruna VIII research vessel. Phytoplankton and zooplankton samples were collected in 14 stations using Kitahara and NORPAC plankton net. The plankton data in this research was analyzed with Bray-Curtis Clustering Analysis (Single Link), linear regression and Pearson correlation matrix. The results showed that zooplankton abundance was highest at the strait between Liang and Labobo Island, while phytoplankton was found abundant at eastern Tinangkung Island. On the other hand, Mesamat Bay was found having very low abundance of zooplankton and phytoplankton, which probably related to low nutrient availability in the water column. Calanoids, cyclopoids, and oikopleurans were dominant taxa with widest spatial distribution and highest importance value in zooplankton community of Banggai Islands. Meanwhile Chaetoceros, Rhizosolenia and Thalassiothrix were the dominant genus with widest spatial distribution and highest importance value in phytoplankton community. The result of clustering analysis showed that there were three stations with unique plankton community, and was found very different from the planktonic community in other stations. It was interesting to note that bottom-up control by nutrient availabilty, and top-down control by predator-prey interaction, probably not the main factor responsible for the unique pattern of plankton community structure of Banggai Islands.</p> <p>Keywords: plankton community, Banggai islands waters, Bray-Curtis clustering analysis, biological indices.</p>


2013 ◽  
Vol 5 (1) ◽  
Author(s):  
Hikmah Thoha ◽  
Arief Rachman ◽  
Arief Rachman

Banggai Islands waters are mixing area between Banda Sea and Makassar Sea, thus resulting in the existence of many unique marine ecosystems. This conditon might also lead to the occurrence of unique and specific plankton community in the oceanic ecosystem of Banggai Islands. This research was conducted in 26 June to 8 July using Baruna VIII research vessel. Phytoplankton and zooplankton samples were collected in 14 stations using Kitahara and NORPAC plankton net. The plankton data in this research was analyzed with Bray-Curtis Clustering Analysis (Single Link), linear regression and Pearson correlation matrix. The results showed that zooplankton abundance was highest at the strait between Liang and Labobo Island, while phytoplankton was found abundant at eastern Tinangkung Island. On the other hand, Mesamat Bay was found having very low abundance of zooplankton and phytoplankton, which probably related to low nutrient availability in the water column. Calanoids, cyclopoids, and oikopleurans were dominant taxa with widest spatial distribution and highest importance value in zooplankton community of Banggai Islands. Meanwhile Chaetoceros, Rhizosolenia and Thalassiothrix were the dominant genus with widest spatial distribution and highest importance value in phytoplankton community. The result of clustering analysis showed that there were three stations with unique plankton community, and was found very different from the planktonic community in other stations. It was interesting to note that bottom-up control by nutrient availabilty, and top-down control by predator-prey interaction, probably not the main factor responsible for the unique pattern of plankton community structure of Banggai Islands. Keywords: plankton community, Banggai islands waters, Bray-Curtis clustering analysis, biological indices.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1767 ◽  
Author(s):  
Oswald Schmitz

Predator–prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator–prey relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator–prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator–prey interaction, causing predator and prey to adapt their traits—through phenotypically plastic or rapid evolutionary responses—and the nature of their interaction. Research shows that examining predator–prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator–prey interactions observed in different ecological contexts.


2015 ◽  
Vol 12 (3) ◽  
pp. 2381-2427 ◽  
Author(s):  
F. Carlotti ◽  
M.-P. Jouandet ◽  
A. Nowaczyk ◽  
M. Harmelin-Vivien ◽  
D. Lefèvre ◽  
...  

Abstract. This study presents results on the zooplankton response to the early phase of the northeastern Kerguelen bloom during the KEOPS2 survey (15 October–20 November 2011). The campaign combined a large coverage of the eastern part of the shelf and the adjacent oceanic regions with 2 quasi-perpendicular transects oriented south to north (between 49°08' and 46°50' S) and west to east (between 69°50' and 74°60' E) aiming to document the spatial extension of the bloom and its coastal-off shore gradient, and a pseudo-lagrangian survey located in a complex recirculation zone in a stationary meander of the Polar front nearly centered at the crossing of the 2 initial transects. In addition, 8 stations were performed for 24 h observations, distributed in key areas and some of them common with the KEOPS1 cruise (January–February 2005). The mesozooplankton biomass stocks observed at the beginning of the KEOPS2 cruise were around 2 g C m−2 both above the plateau and in oceanic waters. Zooplankton biomasses in oceanic waters were maintained in average below 2 g C m−2 over the study period, except for one station in the Polar Front Zone (FL), whereas zooplankton biomasses were around 4 g C m−2 on the plateau at the end of the cruise. Taxonomic composition and stable isotope ratios of size-fractionated zooplankton indicated the strong domination of herbivores. The most remarkable feature during the sampling period was the stronger increase in the integrated 0–250 m abundances in the oceanic waters (25 × 103 to 160 × 103 ind m−2) than on the plateau (25 × 103 to 90 × 103 ind m−2). The size structure and taxonomic distributions revealed a cumulative contribution of various larval stages of dominant copepods and euphausiids particularly in the oceanic waters, with clearly identifiable stages of progress during the Lagrangian survey. These different results during KEOPS2 suggested that the zooplankton community was able to respond to the growing phytoplankton blooms earlier on the plateau than in the oceanic waters. The reproduction and early stage development of dominant species were sustained by mesoscale-related initial ephemeral blooms in oceanic waters but individual growth was still food-limited and zooplankton biomass stagnated. On the contrary, zooplankton abundances and biomasses on the shelf were both in a growing phase, with slightly different rates, due to sub-optimal conditions of growth and reproduction conditions. Combined with the KEOPS1, the present results deliver a consistent understanding of the spring changes in zooplankton abundance and biomass in the Kerguelen area.


2021 ◽  
Author(s):  
Hyeon Been Lee ◽  
Dong Hyuk Jeong ◽  
Byung Cheol Cho ◽  
Jong Soo Park

AbstractSolar salterns are excellent artificial systems for examining species diversity and succession along salinity gradients. Here, the eukaryotic community in surface water of a Korean solar saltern (30 to 380 practical salinity units) was investigated from April 2019 to October 2020 using Illumina sequencing targeting the V4 and V9 regions of 18S rDNA. A total of 926 operational taxonomic units (OTUs) and 1,999 OTUs were obtained with the V4 and V9 regions, respectively. Notably, most of the OTUs were microbial eukaryotes, and the high-abundance groups (> 5% relative abundance (RA), Alveolata, Stramenopila, Archaeplastida, and Opisthokonta) usually accounted for > 90% of the total cumulative read counts and > 80% of all OTUs. Moreover, the high-abundance Alveolata (larger forms) and Stramenopila (smaller forms) groups displayed a significant inverse relationship, probably due to predator–prey interactions. Most of the low-abundance (0.1–5% RA) and rare (< 0.1% RA) groups remained small portion during the field surveys. Taxonomic novelty (at < 90% sequence identity) was high in the Amoebozoa, Cryptista, Haptista, Rhizaria, and Stramenopila groups (69.8% of all novel OTUs), suggesting the presence of a large number of hidden species in hypersaline environments. Remarkably, the high-abundance groups had little overlap with the other groups, implying the weakness of rare-to-prevalent community dynamics. The low-abundance Discoba group alone temporarily became the high-abundance group, suggesting that it is an opportunistic group. Overall, the composition and diversity of the eukaryotic community in hypersaline environments may be persistently stabilized, despite diverse disturbance events.


Sign in / Sign up

Export Citation Format

Share Document