scholarly journals Accuracy of digital dental models and three-dimensional printed dental models in linear measurements and Bolton analysis

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 180
Author(s):  
William Suryajaya ◽  
Maria Purbiati ◽  
Nada Ismah

Background: Due to advances in digital technology, it is possible to obtain digital dental models through intraoral scanning. The stereolithographic data collected from the scanner can subsequently be printed into a three-dimensional dental model in resinic material. However, the accuracy between digital dental models and printed dental models needs to be evaluated since it might affect diagnosis and treatment planning in orthodontic treatment. This study aimed to evaluate the accuracy of digital models scanned by a Trios intraoral scanner and three-dimensional dental models printed using a Formlabs 2 3D printer in linear measurements and Bolton analysis. Methods: A total of 35 subjects were included in this study. All subjects were scanned using a Trios intraoral scanner to obtain digital study models. Stereolithographic data from previous scanning was printed using a Formlabs 2 3D printer to obtain printed study models. Mesiodistal, intercanine, intermolar, and Bolton analysis from all types of study models were measured. The intraclass correlation coefficient was used to assess intraobserver and interobserver reliability. All data were then statistically analyzed. Results: The reliability tests were high for both intraobserver and interobserver reliability, which demonstrates high reproducibility for all measurements on all model types. Most of the data compared between study models showed no statistically significant differences, though some data differed significantly. However, the differences are considered clinically insignificant. Conclusion: Digital dental models and three-dimensional printed dental models may be used interchangeably with plaster dental models for diagnostic and treatment planning purposes. Keywords: Accuracy, 3D printing, digital dental model, printed dental model.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 180
Author(s):  
William Suryajaya ◽  
Maria Purbiati ◽  
Nada Ismah

Background: Due to advances in digital technology, it is possible to obtain digital dental models through intraoral scanning. The stereolithographic data collected from the scanner can subsequently be printed into a three-dimensional dental model in resinic material. However, the accuracy between digital dental models and printed dental models needs to be evaluated since it might affect diagnosis and treatment planning in orthodontic treatment. This study aimed to evaluate the accuracy of digital models scanned by a Trios intraoral scanner and three-dimensional dental models printed using a Formlabs 2 3D printer in linear measurements and Bolton analysis. Methods: A total of 35 subjects were included in this study. All subjects were scanned using a Trios intraoral scanner to obtain digital study models. Stereolithographic data from previous scanning was printed using a Formlabs 2 3D printer to obtain printed study models. Mesiodistal, intercanine, intermolar, and Bolton analysis from all types of study models were measured. The intraclass correlation coefficient was used to assess intraobserver and interobserver reliability. All data were then statistically analyzed. Results: The reliability tests were high for both intraobserver and interobserver reliability, which demonstrates high reproducibility for all measurements on all model types. Most of the data compared between study models showed no statistically significant differences, though some data differed significantly. However, the differences are considered clinically insignificant. Conclusion: Digital dental models and three-dimensional printed dental models may be used interchangeably with plaster dental models for diagnostic and treatment planning purposes. Keywords: Accuracy, 3D printing, digital dental model, printed dental model.


2020 ◽  
Vol 14 (02) ◽  
pp. 189-193 ◽  
Author(s):  
Passent Aly ◽  
Cherif Mohsen

Abstract Objectives The integration of computer-aided design and manufacturing technologies in diagnosis, treatment planning, and fabrication of prosthetic restoration is changing the way in which prosthodontic treatment is provided to patients. The aim of this study was to compare the accuracy of three-dimensional (3D) printed casts produced from the intraoral scanner using stereolithographic (SLA) 3D printing technique, their digital replicas, and conventional stone casts. Materials and Methods In this in vitro study, a typodont of maxillary and mandibular arches with full dentate ivory teeth was used as a reference cast. The typodont was digitized using Trios 3Shape intraoral scanner to create digital casts. The digital files were converted into 3D printed physical casts using a prototyping machine that utilizes the stereolithography printing technology and photocurable polymer as printing material. Linear measurements (mesiodistal and occlusocervical) and interarch measurements (intercanine and intermolar) were made for digital and prototyped models and were compared with the original stone casts. The reference teeth were canines, first premolars and second premolars in the maxillary and mandibular arches on the right and left sides. The measurements on printed and conventional casts were done by digital caliper while on digital casts; Geomagic Qualify software was used. Statistical Analysis One-way analysis of variance (ANOVA) was used to compare measurements among groups. Results Digital casts showed significantly higher error than the other two groups in all linear and interarch measurements. The mean errors of the digital cast in occlusocervical (OC) and mesiodistal (MD) measurements (0.016 and 0.006, respectively) were higher compared with those in the other two groups (OC, 0.004 and 0.007 and MD, 0.003 and 0.005 [p < 0.0001 and p = 0.02, respectively]). Also, digital mean error in intermolar width (IMW) and intercanine width (ICW) (0.142 and 0.113, respectively) were greater than the other two groups (IMW, 0.019 and 0.008 and ICW, 0.021 and 0.011 [p < 0.0001]). However, the errors were within the acceptable clinical range. Conclusion The 3D printed casts may be considered as a substitute for stone casts with clinically acceptable accuracy that can be used in diagnosis, treatment planning, and fabrication of prosthetic restorations.


2017 ◽  
Vol 22 (3) ◽  
pp. 64-71
Author(s):  
Luciana Quintanilha Pires Fernandes ◽  
Livia Kelly Ferraz Nunes ◽  
Luana Santos Alves ◽  
Felipe de Assis Carvalho Ribeiro ◽  
Jonas Capelli Júnior

ABSTRACT Introduction: Digital dental models provide a more accurate and comprehensive assessment of orthodontic cases. Although this technique is quite promising, there are few three-dimensional measurements methods described in the literature. Objective: The aim of this study was to propose a method for assessing the degree of mandibular anterior dental crowding in the three planes of space, using digital dental models. Methods: Thirty dental casts were selected and scanned by Maestro 3D Dental Scanner and imported by Geomagic Qualify 2013 software. The degree of crowding was calculated by two examiners, based on the Little’s Irregularity Index, by means of the definition of axial, coronal and sagittal planes for each model. Intraexaminer analysis was performed with Dahlberg’s Formula (DF) and Intraclass Correlation Coefficients (ICC), and interexaminer analysis was performed with ICC and paired t-test. Results: The ICC showed an excellent agreement (p < 0.05) for all measurements, except for the intraexaminer and interexaminer in the Z-axis, in which it was found a moderate agreement. The DF showed a satisfactory accuracy with all measurements showing less than 1 mm difference. The paired t-test showed statistical difference between the examiners in two measurements, although it was clinical irrelevant. Conclusion: When comparing the three planes of space, the Z-axis showed the greatest variation in landmarks placement; however, overall, the present method seems precise and reproducible.


2020 ◽  
Vol 8 (3) ◽  
pp. 79
Author(s):  
Aalaa Emara ◽  
Neha Sharma ◽  
Florian S. Halbeisen ◽  
Bilal Msallem ◽  
Florian M. Thieringer

Rapidly developing digital dental technologies have substantially simplified the documentation of plaster dental models. The large variety of available scanners with varying degrees of accuracy and cost, however, makes the purchase decision difficult. This study assessed the digitization accuracy of a cone-beam computed tomography (CBCT) and an intraoral scanner (IOS), as compared to a desktop optical scanner (OS). Ten plaster dental models were digitized three times (n = 30) with each scanner. The generated STL files were cross-compared, and the RMS values were calculated. Conclusions were drawn about the accuracy with respect to precision and trueness levels. The precision of the CBCT scanner was similar to the desktop OS reference, which both had a median deviation of 0.04 mm. The IOS had statistically significantly higher deviation compared to the reference OS, with a median deviation of 0.18 mm. The trueness values of the CBCT was also better than that of IOS—median differences of 0.14 and 0.17 mm, respectively. We conclude that the tested CBCT scanner is a highly accurate and user-friendly scanner for model digitization, and therefore a valuable alternative to the OS. The tested IOS was generally of lower accuracy, but it can still be used for plaster dental model digitization.


2020 ◽  
pp. 193229682097465
Author(s):  
Joel Willem Johan Lasschuit ◽  
Jill Featherston ◽  
Katherine Thuy Trang Tonks

Background: In an era of increasing technology and telehealth utilization, three-dimensional (3D) wound cameras promise reliable, rapid, and touch-free ulceration measurements. However, reliability data for commercially available devices in the diabetes foot service setting is lacking. We aimed to evaluate the reliability of diabetes-related foot ulceration measurement using a 3D wound camera in comparison to the routinely used ruler and probe. Method: Participants were prospectively recruited from a tertiary interdisciplinary diabetes foot service. Ulcerations were measured at each visit by two blinded observers, first by ruler and probe, and then using a 3D wound camera twice. Reliability was evaluated using intraclass correlation coefficients (ICC). Measurement methods were compared by Pearson correlation. Results: Sixty-three ulcerations affecting 38 participants were measured over 122 visits. Interobserver reliability of ruler measurement was excellent for estimated area (ICC 0.98, 95% CI 0.97-0.98) and depth (ICC 0.93, 95% CI 0.90-0.95). Intraobserver and interobserver reliability of the 3D wound camera area was excellent (ICC 0.96, 95%CI 0.95-0.97 and 0.97 95% CI 0.96-0.98, respectively). Depth was unrecordable in over half of 3D wound camera measurements, and reliability was inferior to probe measurement. Area correlation between methods was good ( R = 0.88 and 0.94 per observer); however, depth correlation was poor ( R = 0.49 and 0.65). Conclusions: 3D wound cameras offer practical advantages over ruler-based measurement. In diabetes-related foot ulceration, the reliability and comparability of area measurement was excellent across both methods, although depth was more reliably obtained by the probe. These limitations, together with cost, are important considerations if implementing this technology in diabetes foot care.


2016 ◽  
Vol 86 (3) ◽  
pp. 487-494 ◽  
Author(s):  
Furkan Dindaroğlu ◽  
Pınar Kutlu ◽  
Gökhan Serhat Duran ◽  
Serkan Görgülü ◽  
Erhan Aslan

ABSTRACT Objective:  To evaluate the accuracy of three-dimensional (3D) stereophotogrammetry by comparing it with the direct anthropometry and digital photogrammetry methods. The reliability of 3D stereophotogrammetry was also examined. Materials and Methods:  Six profile and four frontal parameters were directly measured on the faces of 80 participants. The same measurements were repeated using two-dimensional (2D) photogrammetry and 3D stereophotogrammetry (3dMDflex System, 3dMD, Atlanta, Ga) to obtain images of the subjects. Another observer made the same measurements for images obtained with 3D stereophotogrammetry, and interobserver reproducibility was evaluated for 3D images. Both observers remeasured the 3D images 1 month later, and intraobserver reproducibility was evaluated. Statistical analysis was conducted using the paired samples t-test, intraclass correlation coefficient, and Bland-Altman limits of agreement. Results:  The highest mean difference was 0.30 mm between direct measurement and photogrammetry, 0.21 mm between direct measurement and 3D stereophotogrammetry, and 0.5 mm between photogrammetry and 3D stereophotogrammetry. The lowest agreement value was 0.965 in the Sn-Pro parameter between the photogrammetry and 3D stereophotogrammetry methods. Agreement between the two observers varied from 0.90 (Ch-Ch) to 0.99 (Sn-Me) in linear measurements. For intraobserver agreement, the highest difference between means was 0.33 for observer 1 and 1.42 mm for observer 2. Conclusions:  Measurements obtained using 3D stereophotogrammetry indicate that it may be an accurate and reliable imaging method for use in orthodontics.


2021 ◽  
pp. 146531252110108
Author(s):  
Yumi Ozeki ◽  
Hiroya Ozaki ◽  
Kenji Fushima

Objective: To evaluate the gingival condition due to adult orthodontic treatment using the clinical crown height (CCH) as an index. Design: Retrospective study. Setting: Department of Orthodontics at a university. Participants: A total of 21 adult female patients with healthy periodontal tissue were treated by means of the multi-bracket appliance with extraction of four first premolars. Methods: Three-dimensional (3D) digital dental models were reconstructed to assess the vertical movement of the free gingival margin caused by adult orthodontic treatment. Pre- and post-treatment CCH were measured, and changes in CCH due to treatment were examined. Results: The change in CCH by orthodontic treatment was able to be assessed objectively using 3D digital models of the dental casts. In the upper dentition, a significant reduction in CCH was found on the labial and lingual sides of the central incisor, with a mean of –0.28 mm and –0.34 mm, respectively ( P < 0.001). In contrast, a significant increase in CCH was found on the labial side of the lateral incisor with a mean of 0.75 mm ( P < 0.001). In the lower dentition, CCH on the lingual side of the canine, the second premolar and the first molar increased significantly ( P < 0.001), with a mean of 0.41 mm, 0.45 mm and 0.50 mm, respectively. For the buccal side, the second premolar showed a significant increase in CCH with a mean of 0.61 mm ( P < 0.001). Conclusion: By using the CCH as an index, it was possible to assess the gingival condition after active orthodontic treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Naseer Ahmed ◽  
Mohamad Syahrizal Bin Halim ◽  
Zuryati Ab Ghani ◽  
Zafar Ali Khan ◽  
Maria Shakoor Abbasi ◽  
...  

The objective of this paper was to evaluate the existence of golden percentage in natural maxillary anterior teeth with the aid of 3D digital dental models and 2D photographs. And to propose regional values of golden percentage for restoration of maxillary anterior teeth. For this purpose, one hundred and ninety dentate subjects with sound maxillary anterior teeth were selected. Standardized frontal images were captured with DSLR, and the apparent width of maxillary anterior teeth was measured utilizing a software on a personal laptop computer. Once the dimensions were recorded, the calculations were made according to the golden percentage theory (GPT). The data were analyzed by independent and paired T -test. The level of significance was set at p < 0.05 . The golden percentage values were not found in this study. The values obtained were 16%, 15%, 20%, 20%, 15%, and 16% moving from the right canine to the left canine teeth. There was no significant gender difference in the golden percentage values. Thus, golden percentage should not be used solely for the correction of anterior teeth or for determining dental attractiveness. Emphasis should be given to a range of dental proportion on regional basis.


2014 ◽  
Vol 19 (2) ◽  
pp. 90-95 ◽  
Author(s):  
Antônio Carlos de Oliveira Ruellas ◽  
Leonardo Koerich ◽  
Carolina Baratieri ◽  
Claudia Trindade Mattos ◽  
Matheus Alves Junior ◽  
...  

Objective: The aim of this study was to validate a method used to assess dental asymmetry, in relation to the skeletal midline, by means of CBCT. Methods: Ten patients who had CBCT scans taken were randomly selected for this study. Five different observers repeated 10 landmarks (x, y and z variables for each) and 12 linear measurements within 10 days. Measurements were taken in both arches to evaluate symmetry of first molars, canines and dental midline in relation to the skeletal midline. Intraclass correlation coefficient (ICC) was carried out to assess intra- and interobserver reliability for landmarks and distances. Average mean difference was also assessed to check measurement errors between observers. Results: ICC landmarks was ≥ 0.9 for 27 (90%) and 25 (83%) variables for intra- and interobserver, respectively. ICC for distances was ≥ 0.9 for 7 (58%) and 5 (42%), respectively. All ICC landmarks for distances were >0.75 for both intra- and interobserver. The mean difference between observers was ≤ 0.6 mm for all the distances. Conclusion: The method used to assess dental asymmetry by means of CBCT is valid. Measurements of molars, canines and dental midline symmetry with the skeletal midline are reproducible and reliable when taken by means of CBCT and by different operators.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yushu Liu ◽  
Rui Zhang ◽  
Hongqiang Ye ◽  
Shimin Wang ◽  
Kuan-Paul Wang ◽  
...  

AbstractThis study aimed to develop a three-dimensional (3D) colour reproduction system to improve the aesthetic effects of dental prostheses. The system’s colour accuracy was also evaluated. Based on the concept of colour management, 96 colour patches were selected to develop colour profiles for an intraoral scanner and a 3D printer using polynomial regression. The colour differences Δ$${E}_{ab}^{\ast }$$Eab⁎ between colour patches reproduced using different colour profiles and the original colour patches were analysed to select the best combinations of colour profiles. The 3D colour reproduction system with the best-performing (i.e. third-order polynomial regression) colour profiles was finally evaluated using tooth and gum shades. The median Δ$${E}_{ab}^{\ast }$$Eab⁎ was 6.940 ranging from 1.504 to 32.660. In terms of tooth and gum shade, the median Δ$${E}_{ab}^{\ast }$$Eab⁎ was 6.313, and half of the shade blocks were above the mismatch threshold (Δ$${E}_{ab}^{\ast }$$Eab⁎ > 6.80). In conclusion, the colour management based on polynomial regression can decrease the colour difference of the 3D colour reproduction system, but not to clinically acceptable levels. Further advances are needed to improve the methods and hardware.


Sign in / Sign up

Export Citation Format

Share Document