scholarly journals Event driven Recommendation System for E-commerce using Knowledge based Collaborative Filtering Technique

2020 ◽  
Vol 21 (3) ◽  
pp. 369-378
Author(s):  
Mahesh Kumar Singh ◽  
Om Prakash Rishi

The Internet is changing the method of selling and purchasing items. Nowadays online trading replaces offline trading. The items offered by the online system can influence the nature of buying customers. The recommendation system is one of the basic tools to provide such an environment. Several techniques are used to design and implement the recommendation system. Every recommendation system passes from two phases similarity computation among the users or items and correlation between target user and items. Collaborative filtering is a common technique used for designing such a system. The proposed system uses a knowledge base generated from knowledge graph to identify the domain knowledge of users, items, and relationships among these, knowledge graph is a labelled multidimensional directed graph that represents the relationship  among the users and the items. Almost every existing recommendation system is based on one of feature, review, rating, and popularity of the items in which users’ involvement is very less or none. The proposed approach uses about 100 percent of users’ participation in the form of activities during navigation of the web site. Thus, the system expects under the users’ interest that is beneficial for both seller and buyer. The proposed system relates the category of items, not just specific items that may be interested in the users. We see the effectiveness of this approach in comparison with baseline methods in the area of recommendation system using three parameters precision, recall, and NDCG through online and offline evaluation studies with user data, and its performance is better than all other baseline systems in all aspects.

Author(s):  
Yang Hu ◽  
Yiwen Ding ◽  
Feng Xu ◽  
Jiayi Liu ◽  
Wenjun Xu ◽  
...  

Abstract In recent years, more and more attention has been paid to Human-Robot Collaborative Disassembly (HRCD) in the field of industrial remanufacturing. Compared with the traditional manufacturing, HRCD helps to improve the manufacturing flexibility with considering the manufacturing efficiency. In HRCD, knowledge could be obtained from the disassembly process and then provides useful information for the operator and robots to execute their disassembly tasks. Afterwards, a crucial point is to establish a knowledge-based system to facilitate the interaction between human operators and industrial robots. In this context, a knowledge recommendation system based on knowledge graph is proposed to effectively support Human-Robot Collaboration (HRC) in disassembly. A disassembly knowledge graph is constructed to organize and manage the knowledge in the process of HRCD. After that, based on this, a knowledge recommendation procedure is proposed to recommend disassembly knowledge for the operator. Finally, the case study demonstrates that the developed system can effectively acquire, manage and visualize the related knowledge of HRCD, and then assist the human operator to complete the disassembly task by knowledge recommendation, thus improving the efficiency of collaborative disassembly. This system could be used in the human-robot collaboration disassembly process for the operators to provide convenient knowledge recommendation service.


Author(s):  
Gang Huang ◽  
Man Yuan ◽  
Chun-Sheng Li ◽  
Yong-he Wei

Firstly, this paper designs the process of personalized recommendation method based on knowledge graph, and constructs user interest model. Second, the traditional personalized recommendation algorithms are studied and their advantages and disadvantages are analyzed. Finally, this paper focuses on the combination of knowledge graph and collaborative filtering recommendation algorithm. They are effective to solve the problem where [Formula: see text] value is difficult to be determined in the clustering process of traditional collaborative filtering recommendation algorithm as well as data sparsity and cold start, utilizing the ample semantic relation in knowledge graph. If we use RDF data, which is distributed by the E and P (Exploration and Development) database based on the petroleum E and P, to verify the validity of the algorithm, the result shows that collaborative filtering algorithm based on knowledge graph can build the users’ potential intentions by knowledge graph. It is enlightening to query the information of users. In this way, it expands the mind of users to accomplish the goal of recommendation. In this paper, a collaborative filtering algorithm based on domain knowledge atlas is proposed. By using knowledge graph to effectively classify and describe domain knowledge, the problems are solved including clustering and the cold start in traditional collaborative filtering recommendation algorithm. The better recommendation effect has been achieved.


2006 ◽  
Vol 15 (06) ◽  
pp. 945-962 ◽  
Author(s):  
JOHN O'DONOVAN ◽  
BARRY SMYTH

Increasing availability of information has furthered the need for recommender systems across a variety of domains. These systems are designed to tailor each user's information space to suit their particular information needs. Collaborative filtering is a successful and popular technique for producing recommendations based on similarities in users' tastes and opinions. Our work focusses on these similarities and the fact that current techniques for defining which users contribute to recommendation are in need of improvement. In this paper we propose the use of trustworthiness as an improvement to this situation. In particular, we define and empirically test a technique for eliciting trust values for each producer of a recommendation based on that user's history of contributions to recommendations. We compute a recommendation range to present to a target user. This is done by leveraging under/overestimate errors in users' past contributions in the recommendation process. We present three different models to compute this range. Our evaluation shows how this trust-based technique can be easily incorporated into a standard collaborative filtering algorithm and we define a fair comparison in which our technique outperforms a benchmark algorithm in predictive accuracy. We aim to show that the presentation of absolute rating predictions to users is more likely to reduce user trust in the recommendation system than presentation of a range of rating predictions. To evaluate the trust benefits resulting from the transparency of our recommendation range techniques, we carry out user-satisfaction trials on BoozerChoozer, a pub recommendation system. Our user-satisfaction results show that the recommendation range techniques perform up to twice as well as the benchmark.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhenning Yuan ◽  
Jong Han Lee ◽  
Sai Zhang

Aiming at the problem that the single model of the traditional recommendation system cannot accurately capture user preferences, this paper proposes a hybrid movie recommendation system and optimization method based on weighted classification and user collaborative filtering algorithm. The sparse linear model is used as the basic recommendation model, and the local recommendation model is trained based on user clustering, and the top-N personalized recommendation of movies is realized by fusion with the weighted classification model. According to the item category preference, the scoring matrix is converted into a low-dimensional, dense item category preference matrix, multiple cluster centers are obtained, the distance between the target user and each cluster center is calculated, and the target user is classified into the closest cluster. Finally, the collaborative filtering algorithm is used to predict the scores for the unrated items of the target user to form a recommendation list. The items are clustered through the item category preference, and the high-dimensional rating matrix is converted into a low-dimensional item category preference matrix, which further reduces the sparsity of the data. Experiments based on the Douban movie dataset verify that the recommendation algorithm proposed in this article solves the shortcomings of a single algorithm model to a certain extent and improves the recommendation effect.


2013 ◽  
Vol 281 ◽  
pp. 597-602 ◽  
Author(s):  
Guo Fang Kuang ◽  
Chun Lin Kuang

The building materials used in building materials collectively referred to as building materials. New building materials, including a wide range of insulation materials, insulation materials, high strength materials, breathing material belong to the new material. Collaborative filtering process is based on known user evaluation to predict the target user interest in the target, and then recommended to the target user. This paper proposes the development of building materials recommendation system based on Collaborative filtering. Experimental data sets prove that the proposed algorithm is effective and reasonable.


2019 ◽  
Vol 16 (1(Suppl.)) ◽  
pp. 0263
Author(s):  
AL-Bakri Et al.

Recommender Systems are tools to understand the huge amount of data available in the internet world. Collaborative filtering (CF) is one of the most knowledge discovery methods used positively in recommendation system. Memory collaborative filtering emphasizes on using facts about present users to predict new things for the target user. Similarity measures are the core operations in collaborative filtering and the prediction accuracy is mostly dependent on similarity calculations. In this study, a combination of weighted parameters and traditional similarity measures are conducted to calculate relationship among users over Movie Lens data set rating matrix. The advantages and disadvantages of each measure are spotted. From the study, a new measure is proposed from the combination of measures to cope with the global meaning of data set ratings. After conducting the experimental results, it is shown that the proposed measure achieves major objectives that maximize the accuracy Predictions.


2012 ◽  
Vol 6-7 ◽  
pp. 636-640 ◽  
Author(s):  
Guo Fang Kuang

The recommendation system in the e-commerce is to provide customers with product information and recommendations to help customers decide what to buy goods and analog sales staff to recommend merchandise to complete the purchase process. Collaborative filtering process is based on known user evaluation to predict the target user interest in the target, and then recommended to the target user. This paper proposes the development of E-commerce recommendation system based on Collaborative filtering. Experimental data sets prove that the proposed algorithm is effective and reasonable.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaofeng Li ◽  
Dong Li

The e-commerce recommendation system mainly includes content recommendation technology, collaborative filtering recommendation technology, and hybrid recommendation technology. The collaborative filtering recommendation technology is a successful application of personalized recommendation technology. However, due to the sparse data and cold start problems of the collaborative recommendation technology and the continuous expansion of data scale in e-commerce, the e-commerce recommendation system also faces many challenges. This paper has conducted useful exploration and research on the collaborative recommendation technology. Firstly, this paper proposed an improved collaborative filtering algorithm. Secondly, the community detection algorithm is investigated, and two overlapping community detection algorithms based on the central node and k-based faction are proposed, which effectively mine the community in the network. Finally, we select a part of user communities from the user network projected by the user-item network as the candidate neighboring user set for the target user, thereby reducing calculation time and increasing recommendation speed and accuracy of the recommendation system. This paper has a perfect combination of social network technology and collaborative filtering technology, which can greatly increase recommendation system performance. This paper used the MovieLens dataset to test two performance indexes which include MAE and RMSE. The experimental results show that the improved collaborative filtering algorithm is superior to other two collaborative recommendation algorithms for MAE and RMSE performance.


Sign in / Sign up

Export Citation Format

Share Document