scholarly journals Genetic analyses of agronomic traits in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.)

2012 ◽  
Vol 62 (4) ◽  
pp. 303-309 ◽  
Author(s):  
Chunhua Li ◽  
Kiwa Kobayashi ◽  
Yasuko Yoshida ◽  
Ryo Ohsawa
2020 ◽  
Vol 11 ◽  
Author(s):  
Yuan Song ◽  
Zhifeng Jia ◽  
Yukang Hou ◽  
Xiang Ma ◽  
Lizhen Li ◽  
...  

Plants experience a wide array of environmental stimuli, some of which are frequent occurrences of cold weather, which have priming effects on agricultural production and agronomic traits. DNA methylation may act as an epigenetic regulator for the cold response of Tartary buckwheat (Fagopyrum tataricum). Combined with long-term field observation and laboratory experiments, comparative phenome, methylome, and transcriptome analyses were performed to investigate the potential epigenetic contributions for the cold priming of Tartary buckwheat variety Dingku1. Tartary buckwheat cv. Dingku1 exhibited low-temperature resistance. Single-base resolution maps of the DNA methylome were generated, and a global loss of DNA methylation was observed during cold responding in Dingku1. These sites with differential methylation levels were predominant in the intergenic regions. Several hundred genes had different DNA methylation patterns and expressions in different cold treatments (cold memory and cold shock), such as CuAO, RPB1, and DHE1. The application of a DNA methylation inhibitor caused a change of the free lysine content, suggesting that DNA methylation can affect metabolite accumulation for Tartary buckwheat cold responses. The results of the present study suggest important roles of DNA methylation in regulating cold response and forming agronomic traits in Tartary buckwheat.


Fagopyrum ◽  
2021 ◽  
Vol 38 (1) ◽  
pp. 5-13
Author(s):  
Shinya Kasajima

Tartary buckwheat (Fagopyrum tataricum(L.) Gaertn.) is considered a functional food because its seeds contain higher amounts of polyphenols (e.g., rutin) compared to common buckwheat. However, because of its highly bitter taste and difficulties in cultivation, the agricultural production and usage of Tartary buckwheat in food products remain limited. The nutritional and functional ingredients of Tartary buckwheat include quercetin, which causes its bitterness and is generated by rutinosidase (rutin-degrading enzyme). A nonbitter Tartary buckwheat variety with trace levels of rutinosidase has recently been developed. Despite such research, there is still a lack of agronomic information on Tartary buckwheat. Lodging can be a significant problem during its cultivation, and a lodging-resistant, semidwarf variety has been developed. This paper summarizes recent advances in our knowledge regarding the nutritional and agronomic traits of Tartary buckwheat. The information extends our understanding of the health benefits of Tartary buckwheat and the solutions to challenges in its agricultural production. Keywords: agronomic traits, nutrient function, Tartary buckwheat


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kaixuan Zhang ◽  
Ming He ◽  
Yu Fan ◽  
Hui Zhao ◽  
Bin Gao ◽  
...  

Abstract Background Tartary buckwheat (Fagopyrum tataricum) is a nutritionally balanced and flavonoid-rich crop plant that has been in cultivation for 4000 years and is now grown globally. Despite its nutraceutical and agricultural value, the characterization of its genetics and its domestication history is limited. Results Here, we report a comprehensive database of Tartary buckwheat genomic variation based on whole-genome resequencing of 510 germplasms. Our analysis suggests that two independent domestication events occurred in southwestern and northern China, resulting in diverse characteristics of modern Tartary buckwheat varieties. Genome-wide association studies for important agricultural traits identify several candidate genes, including FtUFGT3 and FtAP2YT1 that significantly correlate with flavonoid accumulation and grain weight, respectively. Conclusions We describe the domestication history of Tartary buckwheat and provide a detailed resource of genomic variation to allow for genomic-assisted breeding in the improvement of elite cultivars.


2019 ◽  
Vol 25 (6) ◽  
pp. 915-920
Author(s):  
Tatsuro Suzuki ◽  
Toshikazu Morishita ◽  
Shigenobu Takigawa ◽  
Takahiro Noda ◽  
Koji Ishiguro

2016 ◽  
Vol 22 (4) ◽  
pp. 557-562 ◽  
Author(s):  
Koji Ishiguro ◽  
Toshikazu Morishita ◽  
Junzo Ashizawa ◽  
Tatsuro Suzuki ◽  
Takahiro Noda

2017 ◽  
Vol 8 ◽  
pp. 49 ◽  
Author(s):  
Tanveer Bilal Pirzadah ◽  
Bisma Malik ◽  
Inayatullah Tahir ◽  
Reiaz Ul Rehman

<p>The aim of the present study was to explore the possible metabolites in the methanolic extract of root, stem, groat and hull of the neutraceutical crop, <em>Fagopyrum tataricum</em> using GC-MS technique. From GC-MS metabolite profiling, over 90 different metabolites were identified among root, stem, groat and hull extract.  The most prevailing compounds were 3, 3’, 4’, 5, 7-pentahydroflavone-3-rhamnoglucoside (71.94%) in groat, 9, 12-octadecadienoic acid (49.38%) in root, 6-octadecanoic acid, a steric acid (70.46%) in hull and Cis-9-hexadecanal (13.38%) in stem. Present investigation reveals that <em>F. tataricum</em> is an excellent source of many metabolites such as, fatty acids, hydrocarbons, steroids, terpenoids, esters, organic acids and aldehydes with excellent pharmaceutical properties. These results suggest that tartary buckwheat could be a promising alternative in the functional food sector and neutraceutical to improve social well-being and diminish malnutrition.</p>


Sign in / Sign up

Export Citation Format

Share Document