scholarly journals Recent advances in the nutritional, functional, and agronomic traits of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.)

Fagopyrum ◽  
2021 ◽  
Vol 38 (1) ◽  
pp. 5-13
Author(s):  
Shinya Kasajima

Tartary buckwheat (Fagopyrum tataricum(L.) Gaertn.) is considered a functional food because its seeds contain higher amounts of polyphenols (e.g., rutin) compared to common buckwheat. However, because of its highly bitter taste and difficulties in cultivation, the agricultural production and usage of Tartary buckwheat in food products remain limited. The nutritional and functional ingredients of Tartary buckwheat include quercetin, which causes its bitterness and is generated by rutinosidase (rutin-degrading enzyme). A nonbitter Tartary buckwheat variety with trace levels of rutinosidase has recently been developed. Despite such research, there is still a lack of agronomic information on Tartary buckwheat. Lodging can be a significant problem during its cultivation, and a lodging-resistant, semidwarf variety has been developed. This paper summarizes recent advances in our knowledge regarding the nutritional and agronomic traits of Tartary buckwheat. The information extends our understanding of the health benefits of Tartary buckwheat and the solutions to challenges in its agricultural production. Keywords: agronomic traits, nutrient function, Tartary buckwheat

2012 ◽  
Vol 62 (4) ◽  
pp. 303-309 ◽  
Author(s):  
Chunhua Li ◽  
Kiwa Kobayashi ◽  
Yasuko Yoshida ◽  
Ryo Ohsawa

2020 ◽  
Vol 11 ◽  
Author(s):  
Yuan Song ◽  
Zhifeng Jia ◽  
Yukang Hou ◽  
Xiang Ma ◽  
Lizhen Li ◽  
...  

Plants experience a wide array of environmental stimuli, some of which are frequent occurrences of cold weather, which have priming effects on agricultural production and agronomic traits. DNA methylation may act as an epigenetic regulator for the cold response of Tartary buckwheat (Fagopyrum tataricum). Combined with long-term field observation and laboratory experiments, comparative phenome, methylome, and transcriptome analyses were performed to investigate the potential epigenetic contributions for the cold priming of Tartary buckwheat variety Dingku1. Tartary buckwheat cv. Dingku1 exhibited low-temperature resistance. Single-base resolution maps of the DNA methylome were generated, and a global loss of DNA methylation was observed during cold responding in Dingku1. These sites with differential methylation levels were predominant in the intergenic regions. Several hundred genes had different DNA methylation patterns and expressions in different cold treatments (cold memory and cold shock), such as CuAO, RPB1, and DHE1. The application of a DNA methylation inhibitor caused a change of the free lysine content, suggesting that DNA methylation can affect metabolite accumulation for Tartary buckwheat cold responses. The results of the present study suggest important roles of DNA methylation in regulating cold response and forming agronomic traits in Tartary buckwheat.


2007 ◽  
Vol 87 (1) ◽  
pp. 83-87 ◽  
Author(s):  
Tatsuro Suzuki ◽  
Sun-Ju Kim ◽  
Shigenobu Takigawa ◽  
Yuji Mukasa ◽  
Naoto Hashimoto ◽  
...  

To investigate the physiological roles of rutin (quercetin 3-O-rutinoside) and flavonol-3-glucosidase (f3g, a rutin-degrading enzyme) during cotyledon growth in tartary buckwheat, changes in rutin and quercetin (aglycone of rutin) concentrations, and f3g activities were measured. The rutin concentration gradually increased (about 50 mg g-1 DW cotyledons) up to 12 d after germination (DAG). The quercetin concentration in the tartary buckwheat cotyledon increased immediately after germination, reached a maximum at 4 DAG, and then remained around 1.5 mg g-1 DW until 12 DAG. The f3g activity in the cotyledon and testa decreased gradually after germination. However, it retained 80% activity at 4 DAG compared with dry seed. In addition, the f3g activity was high on the surface of the cotyledon. We also investigated spatial distribution of rutin and f3g activity in 4 DAG seedlings. While rutin was mostly present in the cotyledon, f3g activity was observed in the testa, the surface of the testa, and root. These results suggest that rutin and f3g activity in tartary buckwheat have different physiological roles during cotyledon growth compared with common buckwheat. Key words: Tartary buckwheat; rutin; quercetin; flavonoid; glucosidase; germination


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Zlata Luthar ◽  
Meiliang Zhou ◽  
Aleksandra Golob ◽  
Mateja Germ

Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) and common buckwheat (Fagopyrum esculentum Moench) are important sources of proteins with balanced amino-acid compositions, and thus of high nutritional value. The polyphenols naturally present in Tartary buckwheat and common buckwheat lower the true digestibility of the proteins. Digestion-resistant peptides are a vehicle for fecal excretion of steroids, and in this way, for bile acid elimination and reduction of cholesterol concentrations in serum. Buckwheat proteins are more effective compared to soy proteins for the prevention of gallstone formation. Tartary and common buckwheat grain that contains appropriate amounts of selenium-containing amino acids can be produced as functional food products. The protein-rich by-products of buckwheat are a good source of bioactive substances that can suppress colon carcinogenesis by reducing cell proliferation. The grain embryo is a rich source of proteins, so breeding buckwheat with larger embryos is a possible strategy to increase protein levels in Tartary and common buckwheat grain. However, chemical analysis of the grain is the most relevant criterion for assessing grain protein levels and quality.


2020 ◽  
Vol 48 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Tatsuro Suzuki ◽  
Takahiro Hara ◽  
Takashi Hara ◽  
Kenjiro Katsu

Buckwheat (Fagopyrum spp.) is an important crop in many parts of the world, and many varieties have been developed. One of the important breeding issues to be addressed is the low resistance to preharvest-sprouting which causes loss in yields and quality of buckwheat grain. The occurrence of dormancy in cultivated buckwheat, including presence of secondary dormancy has yet to be clarified. In this study, we investigated the effects of storage temperature and periods using nine common buckwheat (Fagopyrum esculentum), seven Tartary buckwheat (Fagopyrum tataricum) and one wild buckwheat (Fagopyrum homotropicum). In some Tartary buckwheats stored at 5°C, the germination of seeds stored 10 days harvest was significantly less than the germination of seeds collected and sown at harvest maturity; the germination of other germplasm, including common buckwheat, was not affected by storage. This result indicates that Tartary buckwheat can acquire secondary dormancy. In addition, the wild buckwheat did not germinate at any storage temperature up to 30 days after harvest maturity; therefore, this buckwheat is considered to be promising breeding material for increasing resistance to preharvest-sprouting resistance.


2012 ◽  
Vol 7 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Marjana Regvar ◽  
Urška Bukovnik ◽  
Matevž Likar ◽  
Ivan Kreft

AbstractIn the present study, we have evaluated the effects of increased UV-B radiation that simulates 17% ozone depletion, on fungal colonisation and concentrations of rutin, catechin and quercetin in common buckwheat (Fagopyrum esculentum) and tartary buckwheat (Fagopyrum tataricum). Induced root growth and reduced shoot:root ratios were seen in both of these buckwheat species after enhanced UV-B radiation. There was specific induction of shoot quercetin concentrations in UV-B-treated common buckwheat, whereas there were no specific responses for flavonoid metabolism in tartary buckwheat. Root colonisation with arbuscular mycorrhizal fungi significantly reduced catechin concentrations in common buckwheat roots, and induced rutin concentrations in tartary buckwheat, but did not affect shoot concentrations of the measured phenolics. Specific UV-B-related reductions in the density of microsclerotia were observed in tartary buckwheat, indicating a mechanism that potentially affects fungus-plant interactions. The data support the hypothesis that responses to enhanced UV-B radiation can be influenced by the plant pre-adaptation properties and related changes in flavonoid metabolism.


2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
Aleksandra Golob ◽  
Vekoslava Stibilj ◽  
Ivan Kreft ◽  
Mateja Germ

Tartary buckwheat (Fagopyrum tataricum) is a semiwild plant grown in the Himalaya region. Due to its high concentration of flavonoids and trace elements it is of interest for cultivation in other countries as well. The feasibility of increasing the concentration of Se in grain and in green parts of Tartary buckwheat has not yet been investigated. The aim of this investigation was thus to determine the concentration of Se in different edible parts of Tartary buckwheat treated with different concentrations of Na selenate using different techniques. In plants grown in soil fertilized once with 0.5 and 10 mg Se L−1, Se was efficiently translocated from the roots to the leaves and seeds. Foliar spraying with 0.5 mg Se L−1increased Se content in leaves and seeds. Among the edible parts of Tartary buckwheat plants the highest content of Se in control and in treated groups was found in leaves, followed by seeds and stems. Regarding recommended Se concentration, edible parts of Tartary buckwheat were safe for human consumption. Soil fertilization with 0.5 and 10 mg Se L−1and foliar fertilization with 0.5 mg Se L−1are applicable for cultivation of Tartary buckwheat as a functional food enriched with Se.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kaixuan Zhang ◽  
Ming He ◽  
Yu Fan ◽  
Hui Zhao ◽  
Bin Gao ◽  
...  

Abstract Background Tartary buckwheat (Fagopyrum tataricum) is a nutritionally balanced and flavonoid-rich crop plant that has been in cultivation for 4000 years and is now grown globally. Despite its nutraceutical and agricultural value, the characterization of its genetics and its domestication history is limited. Results Here, we report a comprehensive database of Tartary buckwheat genomic variation based on whole-genome resequencing of 510 germplasms. Our analysis suggests that two independent domestication events occurred in southwestern and northern China, resulting in diverse characteristics of modern Tartary buckwheat varieties. Genome-wide association studies for important agricultural traits identify several candidate genes, including FtUFGT3 and FtAP2YT1 that significantly correlate with flavonoid accumulation and grain weight, respectively. Conclusions We describe the domestication history of Tartary buckwheat and provide a detailed resource of genomic variation to allow for genomic-assisted breeding in the improvement of elite cultivars.


Sign in / Sign up

Export Citation Format

Share Document