scholarly journals Recent advances in understanding RNA polymerase II structure and function

2020 ◽  
Vol 9 ◽  
Author(s):  
Daniel Reines

More than 50 years after the identification of RNA polymerase II, the enzyme responsible for the transcription of most eukaryotic genes, studies have continued to reveal fresh aspects of its structure and regulation. New technologies, coupled with years of development of a vast catalog of RNA polymerase II accessory proteins and activities, have led to new revelations about the transcription process. The maturation of cryo-electron microscopy as a tool for unraveling the detailed structure of large molecular machines has provided numerous structures of the enzyme and its accessory factors. Advances in biophysical methods have enabled the observation of a single polymerase’s behavior, distinct from work on aggregate population averages. Other recent work has revealed new properties and activities of the general initiation factors that RNA polymerase II employs to accurately initiate transcription, as well as chromatin proteins that control RNA polymerase II’s firing frequency, and elongation factors that facilitate the enzyme’s departure from the promoter and which control sequential steps and obstacles that must be navigated by elongating RNA polymerase II. There has also been a growing appreciation of the physical properties conferred upon many of these proteins by regions of each polypeptide that are of low primary sequence complexity and that are often intrinsically disordered. This peculiar feature of a surprisingly large number of proteins enables a disordered region of the protein to morph into a stable structure and creates an opportunity for pathway participants to dynamically partition into subcompartments of the nucleus. These subcompartments host designated portions of the chemical reactions that lead to mRNA synthesis. This article highlights a selection of recent findings that reveal some of the resolved workings of RNA polymerase II and its ensemble of supporting factors.

2006 ◽  
Vol 34 (6) ◽  
pp. 1047-1050 ◽  
Author(s):  
T. Juven-Gershon ◽  
J.-Y. Hsu ◽  
J.T. Kadonaga

The RNA polymerase II core promoter is a critical yet often overlooked component in the transcription process. The core promoter is defined as the stretch of DNA, which encompasses the RNA start site and is typically approx. 40–50 nt in length, that directs the initiation of gene transcription. In the past, it has been generally presumed that core promoters are general in function and that transcription initiation occurs via a common shared mechanism. Recent studies have revealed, however, that there is considerable diversity in core promoter structure and function. There are a number of DNA elements that contribute to core promoter activity, and the specific properties of a given core promoter are dictated by the presence or absence of these core promoter motifs. The known core promoter elements include the TATA box, Inr (initiator), BREu {BRE [TFIIB (transcription factor for RNA polymerase IIB) recognition element] upstream of the TATA box} and BREd (BRE downstream of the TATA box), MTE (motif ten element), DCE (downstream core element) and DPE (downstream core promoter element). In this paper, we will provide some perspectives on current and future issues that pertain to the RNA polymerase II core promoter.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Bede Portz ◽  
Feiyue Lu ◽  
Eric B. Gibbs ◽  
Joshua E. Mayfield ◽  
M. Rachel Mehaffey ◽  
...  

Author(s):  
Priyanka Barman ◽  
Rwik Sen ◽  
Amala Kaja ◽  
Jannatul Ferdoush ◽  
Shalini Guha ◽  
...  

San1 ubiquitin ligase is involved in nuclear protein quality control via its interaction with intrinsically disordered proteins for ubiquitylation and proteasomal degradation. Since several transcription/chromatin regulatory factors contain intrinsically disordered domains and can be inhibitory to transcription when in excess, San1 might be involved in transcription regulation. To address this, we analyzed the role of San1 in genome-wide association of TBP [that nucleates pre-initiation complex (PIC) formation for transcription initiation] and RNA polymerase II (Pol II). Our results reveal the roles of San1 in regulating TBP recruitment to the promoters and Pol II association with the coding sequences, and hence PIC formation and coordination of elongating Pol II, respectively. Consistently, transcription is altered in the absence of San1. Such transcriptional alteration is associated with impaired ubiquitylation and proteasomal degradation of Spt16 and gene association of Paf1, but not the incorporation of centromeric histone, Cse4, into the active genes in Δsan1 . Collectively, our results demonstrate distinct functions of a nuclear protein quality control factor in regulating the genome-wide PIC formation and elongating Pol II (and hence transcription), thus unraveling new gene regulatory mechanisms.


2018 ◽  
Author(s):  
David T McSwiggen ◽  
Anders S Hansen ◽  
Hervé Marie-Nelly ◽  
Sheila Teves ◽  
Alec B Heckert ◽  
...  

SummaryDuring lytic infection, Herpes Simplex Virus 1 generates replication compartments (RCs) in host nuclei that efficiently recruit protein factors, including host RNA Polymerase II (Pol II). Pol II and other cellular factors form hubs in uninfected cells that are proposed to phase separate via multivalent protein-protein interactions mediated by their intrinsically disordered regions. Using a battery of live cell microscopic techniques, we show that although RCs superficially exhibit many characteristics of phase separation, the recruitment of Pol II instead derives from nonspecific interactions with the viral DNA. We find that the viral genome remains nucleosome-free, profoundly affecting the way Pol II explores RCs by causing it to repetitively visit nearby binding sites, thereby creating local Pol II accumulations. This mechanism, distinct from phase separation, allows viral DNA to outcompete host DNA for cellular proteins. Our work provides new insights into the strategies used to create local molecular hubs in cells.


2000 ◽  
Vol 113 (15) ◽  
pp. 2679-2683 ◽  
Author(s):  
K. Sugaya ◽  
M. Vigneron ◽  
P.R. Cook

RNA polymerase II is a multi-subunit enzyme responsible for transcription of most eukaryotic genes. It associates with other complexes to form enormous multifunctional ‘holoenzymes’ involved in splicing and polyadenylation. We wished to study these different complexes in living cells, so we generated cell lines expressing the largest, catalytic, subunit of the polymerase tagged with the green fluorescent protein. The tagged enzyme complements a deficiency in tsTM4 cells that have a temperature-sensitive mutation in the largest subunit. Some of the tagged subunit is incorporated into engaged transcription complexes like the wild-type protein; it both resists extraction with sarkosyl and is hyperphosphorylated at its C terminus. Remarkably, subunits bearing such a tag can be incorporated into the active enzyme, despite the size and complexity of the polymerizing complex. Therefore, these cells should prove useful in the analysis of the dynamics of transcription in living cells.


2008 ◽  
Vol 28 (12) ◽  
pp. 3979-3994 ◽  
Author(s):  
Lu Gao ◽  
David S. Gross

ABSTRACT It is well accepted that for transcriptional silencing in budding yeast, the evolutionarily conserved lysine deacetylase Sir2, in concert with its partner proteins Sir3 and Sir4, establishes a chromatin structure that prevents RNA polymerase II (Pol II) transcription. However, the mechanism of repression remains controversial. Here, we show that the recruitment of Pol II, as well as that of the general initiation factors TBP and TFIIH, occurs unimpeded to the silent HMR a 1 and HMLα1/HMLα2 mating promoters. This, together with the fact that Pol II is Ser5 phosphorylated, implies that SIR-mediated silencing is permissive to both preinitiation complex (PIC) assembly and transcription initiation. In contrast, the occupancy of factors critical to both mRNA capping and Pol II elongation, including Cet1, Abd1, Spt5, Paf1C, and TFIIS, is virtually abolished. In agreement with this, efficiency of silencing correlates not with a restriction in Pol II promoter occupancy but with a restriction in capping enzyme recruitment. These observations pinpoint the transition between polymerase initiation and elongation as the step targeted by Sir2 and indicate that transcriptional silencing is achieved through the differential accessibility of initiation and capping/elongation factors to chromatin. We compare Sir2-mediated transcriptional silencing to a second repression mechanism, mediated by Tup1. In contrast to Sir2, Tup1 prevents TBP, Pol II, and TFIIH recruitment to the HMLα1 promoter, thereby abrogating PIC formation.


1995 ◽  
Vol 6 (7) ◽  
pp. 759-775 ◽  
Author(s):  
V Khazak ◽  
P P Sadhale ◽  
N A Woychik ◽  
R Brent ◽  
E A Golemis

Using a screen to identify human genes that promote pseudohyphal conversion in Saccharomyces cerevisiae, we obtained a cDNA encoding hsRPB7, a human homologue of the seventh largest subunit of yeast RNA polymerase II (RPB7). Overexpression of yeast RPB7 in a comparable strain background caused more pronounced cell elongation than overexpression of hsRPB7. hsRPB7 sequence and function are strongly conserved with its yeast counterpart because its expression can rescue deletion of the essential RPB7 gene at moderate temperatures. Further, immuno-precipitation of RNA polymerase II from yeast cells containing hsRPB7 revealed that the hsRPB7 assembles the complete set of 11 other yeast subunits. However, at temperature extremes and during maintenance at stationary phase, hsRPB7-containing yeast cells lose viability rapidly, stress-sensitive phenotypes reminiscent of those associated with deletion of the RPB4 subunit with which RPB7 normally complexes. Two-hybrid analysis revealed that although hsRPB7 and RPB4 interact, the association is of lower affinity than the RPB4-RPB7 interaction, providing a probable mechanism for the failure of hsRPB7 to fully function in yeast cells at high and low temperatures. Finally, surprisingly, hsRPB7 RNA in human cells is expressed in a tissue-specific pattern that differs from that of the RNA polymerase II largest subunit, implying a potential regulatory role for hsRPB7. Taken together, these results suggest that some RPB7 functions may be analogous to those possessed by the stress-specific prokaryotic sigma factor rpoS.


Sign in / Sign up

Export Citation Format

Share Document