scholarly journals 3-formyl-7,11-dimethyl-(2E, 6Z, 10)-dodecatrienal: Antifungal Compound in the Mandibular Gland of the Ant, Lasius fuliginosus Latreille.

1995 ◽  
Vol 69 (12) ◽  
pp. 1581-1586 ◽  
Author(s):  
Toshiharu Akino ◽  
Tetu Turushima ◽  
Ryohei Yamaoka
2021 ◽  
Vol 22 (2) ◽  
pp. 483
Author(s):  
Marija Ivanov ◽  
Abhilash Kannan ◽  
Dejan S. Stojković ◽  
Jasmina Glamočlija ◽  
Ricardo C. Calhelha ◽  
...  

Candidaalbicans represents one of the most common fungal pathogens. Due to its increasing incidence and the poor efficacy of available antifungals, finding novel antifungal molecules is of great importance. Camphor and eucalyptol are bioactive terpenoid plant constituents and their antifungal properties have been explored previously. In this study, we examined their ability to inhibit the growth of different Candida species in suspension and biofilm, to block hyphal transition along with their impact on genes encoding for efflux pumps (CDR1 and CDR2), ergosterol biosynthesis (ERG11), and cytotoxicity to primary liver cells. Camphor showed excellent antifungal activity with a minimal inhibitory concentration of 0.125–0.35 mg/mL while eucalyptol was active in the range of 2–23 mg/mL. The results showed camphor’s potential to reduce fungal virulence traits, that is, biofilm establishment and hyphae formation. On the other hand, camphor and eucalyptol treatments upregulated CDR1;CDR2 was positively regulated after eucalyptol application while camphor downregulated it. Neither had an impact on ERG11 expression. The beneficial antifungal activities of camphor were achieved with an amount that was non-toxic to porcine liver cells, making it a promising antifungal compound for future development. The antifungal concentration of eucalyptol caused cytotoxic effects and increased expression of efflux pump genes, which suggests that it is an unsuitable antifungal candidate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shabnam Javed ◽  
Zaid Mahmood ◽  
Khalid Mohammed Khan ◽  
Satyajit D. Sarker ◽  
Arshad Javaid ◽  
...  

AbstractAntifungal activity of Monothecabuxifolia methanolic extract and its various fractions were assessed against Macrophominaphaseolina, a soil-borne fungal pathogen of more than 500 vegetal species as well as rare and emerging opportunistic human pathogen. Different concentrations of methanolic extract (3.125 to 200 mg mL−1) inhibited fungal biomass by 39–45%. Isolated n-hexane, chloroform and ethyl acetate fractions suppressed fungal biomass by 32–52%, 29–50% and 29–35%, respectively. Triterpenes lupeol and lupeol acetate (1, 2) were isolated from n-hexane while betulin, β-sitosterol, β-amyrin, oleanolic acid (3–6) were isolated from chloroform fraction. Vanillic acid, protocatechuic acid, kaempferol and quercetin (7–10) were isolated from the ethyl acetate fraction and identified using various spectroscopic techniques namely mass spectroscopy and NMR. Antifungal activity of different concentrations (0.0312 to 2 mg mL−1) of the isolated compounds was evaluated and compared with the activity of a broad spectrum fungicide mancozeb. Different concentrations of mencozeb reduced fungal biomass by 83–85%. Among the isolated compounds lupeol acetate (2) was found the highest antifungal against M.phaseolina followed by betulin (3), vanillic acid (7), protocatechuic acid (8), β-amyrin (5) and oleanolic acid (6) resulting in 79–81%, 77–79%, 74–79%, 67–72%, 68–71% and 68–71%, respectively. Rest of the compounds also showed considerable antifungal activity and reduced M.phaseolina biomass by 41–64%.


1991 ◽  
Vol 29 (5) ◽  
pp. 321-332 ◽  
Author(s):  
Ken Naumann ◽  
Mark L. Winston ◽  
Keith N. Slessor ◽  
Glenn D. Prestwich ◽  
Francis X. Webster

1975 ◽  
Vol 21 (2) ◽  
pp. 299-304 ◽  
Author(s):  
S. Huwyler ◽  
K. Grob ◽  
M. Viscontini

2013 ◽  
Vol 171 (8) ◽  
pp. 2176-2185 ◽  
Author(s):  
Devaraj Illakkiam ◽  
Paramasivan Ponraj ◽  
Manoharan Shankar ◽  
Shanmugam Muthusubramanian ◽  
Jeyaprakash Rajendhran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document