Climate Change Analysis using Satellite Data

2017 ◽  
Vol 14 (1) ◽  
pp. 25-39
Author(s):  
Kamsali Nagaraja Balakrishnan Manikiam

Recent times have witnessed increasing impact of industrialization and urban growth on environment. In addition, the potential climate changes and possible adverse impacts on the economy and society at large are causing concern. In India, one of the major concerns is the variability of monsoon rainfall and effects on agriculture and water management. The various parameters associated with environment and climate change need to be monitored and analyzed. The effects of global warming on the Indian subcontinent vary from the submergence of low-lying islands, frequent flooding, coastal degradation and melting of glaciers in the Indian Himalayas. Indian satellites INSAT and IRS launched in early 1980s heralded the era of Space observations. The IRS satellites are providing observations of parameters such as land use/cover, forest, water bodies, crops etc. while INSAT provides quantitative products such as Cloud Motion Vectors (CMVs), Quantitative Precipitation Estimates (QPEs), Outgoing Long-wave Radiation (OLR), Vertical Temperature Profiles (VTPRs), Sea Surface Temperature. The satellite data is operationally used for generating long term database on vegetation, soil condition, rainfall, groundwater etc.. Some of the unique studies are Biosphere Reserve Monitoring, Mapping of

2014 ◽  
Vol 7 (2) ◽  
pp. 1075-1151 ◽  
Author(s):  
R. Van Malderen ◽  
H. Brenot ◽  
E. Pottiaux ◽  
S. Beirle ◽  
C. Hermans ◽  
...  

Abstract. Water vapour plays a dominant role in the climate change debate. However, observing water vapour over a climatological time period in a consistent and homogeneous manner is challenging. At one hand, networks of ground-based instruments allowing to retrieve homogeneous Integrated Water Vapour (IWV) datasets are being set up. Typical examples are Global Navigation Satellite System (GNSS) observation networks such as the International GNSS Service (IGS), with continuous GPS (Global Positioning System) observations spanning over the last 15+ yr, and the AErosol RObotic NETwork (AERONET), providing long-term observations performed with standardized and well-calibrated sun photometers. On the other hand, satellite-based measurements of IWV already have a time span of over 10 yr (e.g. AIRS) or are being merged in order to create long-term time series (e.g. GOME, SCIAMACHY, and GOME-2). The present study aims at setting up a techniques intercomparison of IWV measurements from satellite devices (in the visible, GOME/SCIAMACHY/GOME-2, and in the thermal infrared, AIRS), in-situ measurements (radiosondes) and ground-based instruments (GPS, sun photometer), to assess the applicability of either dataset for water vapour trends analysis. To this end, we selected 28 sites worldwide at which GPS observations can directly be compared with coincident satellite IWV observations, together with sun photometer and/or radiosonde measurements. We found that the mean biases of the different techniques w.r.t. the GPS estimates vary only between −0.3 to 0.5 mm of IWV, but the small bias is accompanied by large Root Mean Square (RMS) values, especially for the satellite instruments. In particular, we analysed the impact of the presence of clouds on the techniques IWV agreement. Also, the influence of specific issues for each instrument on the intercomparison is investigated, e.g. the distance between the satellite ground pixel centre and the co-located ground-based station, the satellite scan angle, daytime/nighttime differences, etc. Furthermore, we checked if the properties of the IWV scatter plots between these different instruments are dependent on the geography and/or altitude of the station. We could only detect a clear dependency of the RMS, for all considered instruments, on latitude or mean IWV: the RMS of the IWV observations w.r.t. the GPS IWV retrievals decreases with increasing latitude and decreasing mean IWV.


2014 ◽  
Vol 7 (8) ◽  
pp. 2487-2512 ◽  
Author(s):  
R. Van Malderen ◽  
H. Brenot ◽  
E. Pottiaux ◽  
S. Beirle ◽  
C. Hermans ◽  
...  

Abstract. Water vapour plays a dominant role in the climate change debate. However, observing water vapour over a climatological time period in a consistent and homogeneous manner is challenging. On one hand, networks of ground-based instruments able to retrieve homogeneous integrated water vapour (IWV) data sets are being set up. Typical examples are Global Navigation Satellite System (GNSS) observation networks such as the International GNSS Service (IGS), with continuous GPS (Global Positioning System) observations spanning over the last 15+ years, and the AErosol RObotic NETwork (AERONET), providing long-term observations performed with standardized and well-calibrated sun photometers. On the other hand, satellite-based measurements of IWV already have a time span of over 10 years (e.g. AIRS) or are being merged to create long-term time series (e.g. GOME, SCIAMACHY, and GOME-2). This study performs an intercomparison of IWV measurements from satellite devices (in the visible, GOME/SCIAMACHY/GOME-2, and in the thermal infrared, AIRS), in situ measurements (radiosondes) and ground-based instruments (GPS, sun photometer), to assess their use in water vapour trends analysis. To this end, we selected 28 sites world-wide for which GPS observations can directly be compared with coincident satellite IWV observations, together with sun photometer and/or radiosonde measurements. The mean biases of the different techniques compared to the GPS estimates vary only between −0.3 to 0.5 mm of IWV. Nevertheless these small biases are accompanied by large standard deviations (SD), especially for the satellite instruments. In particular, we analysed the impact of clouds on the IWV agreement. The influence of specific issues for each instrument on the intercomparison is also investigated (e.g. the distance between the satellite ground pixel centre and the co-located ground-based station, the satellite scan angle, daytime/nighttime differences). Furthermore, we checked if the properties of the IWV scatter plots between these different instruments are dependent on the geography and/or altitude of the station. For all considered instruments, the only dependency clearly detected is with latitude: the SD of the IWV observations with respect to the GPS IWV retrievals decreases with increasing latitude and decreasing mean IWV.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 217 ◽  
Author(s):  
Jennifer Kreklow ◽  
Björn Tetzlaff ◽  
Benjamin Burkhard ◽  
Gerald Kuhnt

Precipitation is a crucial driver for many environmental processes and weather radars are capable of providing precipitation information with high spatial and temporal resolution. However, radar-based quantitative precipitation estimates (QPE) are also subject to various potential uncertainties. This study explored the development, uncertainties and potentials of the hourly operational German radar-based and gauge-adjusted QPE called RADOLAN and its reanalyzed radar climatology dataset named RADKLIM in comparison to ground-truth rain gauge data. The precipitation datasets were statistically analyzed across various time scales ranging from annual and seasonal aggregations to hourly rainfall intensities in regard to their capability to map long-term precipitation distribution, to detect low intensity rainfall and to capture heavy rainfall. Moreover, the impacts of season, orography and distance from the radar on long-term precipitation sums were examined in order to evaluate dataset performance and to describe inherent biases. Results revealed that both radar products tend to underestimate total precipitation sums and particularly high intensity rainfall. However, our analyses also showed significant improvements throughout the RADOLAN time series as well as major advances through the climatologic reanalysis regarding the correction of typical radar artefacts, orographic and winter precipitation as well as range-dependent attenuation.


1993 ◽  
Vol 17 ◽  
pp. 137-142 ◽  
Author(s):  
B.E. Goodison ◽  
A.E. Walker

To assess future global change, monitoring of the climate system through observation and analysis of seasonal and interannual fluctuations of climate variables is necessary. Cryospheric elements such as snow cover are often seen as sensitive indicators and integrators of basic climate conditions and hence an indicator of regional and global change. Snow-cover elements which may serve as signals of variability and change are discussed with respect to the effective use of conventional and remotely sensed information. Conventional data are shown to be effective for assessing questions of temporal variability, but are limited for spatial variability. Passive microwave satellite data make an important contribution by providing spatial and temporal information on snow water equivalent (SWE) and the regional distribution of snowpack extent and state. Use of NIMBUS-7 SMMR (Scanning Multichannel Microwave Radiometer) data to develop a time series of SWE is assessed as a complement to conventional data. Limitations of SMMR coverage compared to DMSP SSM/I (Special Sensor Microwave/Imager) coverage for production of SWE maps for climate change analysis are discussed. Although there are limitations during early season snow cover, information derived from passive microwave data is shown to be able to map and compute the areal coverage of SWE allowing interannual comparison of the amount of water available, the date of peak accumulation and the associated spatial distribution. However, the satellite data record is still too short to establish any definitive trend in snow-cover variability.


2019 ◽  
Author(s):  
Md. Mahmudul Alam ◽  
Chamhuri Siwar ◽  
Abdul Hamid Jaafar ◽  
Basri Talib ◽  
Khairulmaini Bin Osman Salleh

Climate change has mixed impacts on agriculture and the impacts are different in terms of areas, periods and crops. The changing factors of climate have been exerting strong negative impacts on Malaysian agriculture, which is apprehended to result in shortages of water and other resources for long term, worsening soil condition, disease and pest outbreaks on crops and livestock, sea-level rise, and so on. Due to climate change, agricultural productivity and profitability is declining. Despite continuous increases of government subsidy, area of paddy plantation is decreasing and the adaption practices are ineffective. As climate change is universal and its existence is indefinite, the farmers need to adapt to and find ways to mitigate the damages of climatic variation in order to sustain agricultural productivity and attain food security for the


2021 ◽  
Author(s):  
◽  
Sapna Rana

<p>Central Southwest Asia (CSWA; 20°–47°N, 40°–85°E) is a water-scarce and a societally vulnerable region, prone to significant variations in precipitation during the winter months of November–April. Wintertime precipitation variations have a direct impact on CSWA's water resources, agricultural productivity, energy use, and human society. Because of the close relationship between climate and human well-being, an improved understanding of winter season precipitation and its variability over CSWA is of critical importance. However, due to multiple regional challenges (e.g. socio-political instability, extreme topographical heterogeneity, poor coverage of in situ stations, and others) analysis of precipitation in this region has been limited.  In an attempt to bridge the existing knowledge gap, this thesis aims to advance our understanding of CSWA's wintertime precipitation climate through three separate, but inter-related studies on 1) evaluation of multi-source gridded precipitation dataset, 2) investigation of spatial and temporal patterns of precipitation and its links with large-scale modes of climate variability, 3) development of a statistical forecast model. Additionally, precipitation evaluation is also relevant to the overlapping and important region of the Indian subcontinent; a detailed seasonal analysis for which is also presented.  First, the performance of several commonly used gridded precipitation products from multiple sources: gauge-based, satellite-derived, and reanalysis is analysed for all four seasons over the Indian Subcontinent. Results show that the degree of uncertainty in all precipitation estimates varies by region (e.g. topographic relief) and the type of precipitation (e.g. convective, orographic). At the seasonal scale, satellite-products perform better, while reanalyses generally overestimate precipitation. Greater discrepancies occur in areas with low gauge densities, owing to which a complete understanding of the accuracy and limitations of precipitation estimates is hampered for the northwestern region of the Indian subcontinent.  In an extension study, ten multi-source precipitation products are evaluated against an ensemble of four gauge-only datasets. This analysis is carried out for CSWA, which also includes the northwestern region of the Indian subcontinent. Spatial and temporal analysis of results shows that GPCC is a suitable observational dataset for studying long-term wintertime precipitation variations over CSWA. The satellite-derived TRMM 3B42-V7 is a potentially reliable alternative to gauge measurements, while the performance of MERRA reanalysis is satisfactory.  Further, the spatial-temporal patterns of wintertime precipitation variability over CSWA are explored. Three leading patterns are identified by empirical orthogonal function (EOF) analysis, and the associated time series are related to global SST and other large-scale atmospheric circulation fields. The leading patterns of winter precipitation are significantly linked with the El Niño–Southern Oscillation (ENSO); East Atlantic–Western Russia (EA-WR); Siberian High; North Pacific Oscillation (NPO); Scandinavian pattern; and the long-term warming of the Indian Ocean SST. The inter-decadal change of relationship between the first-mode of winter precipitation and ENSO is also investigated, which shows that CSWA precipitation variability was closely related to the extratropical EA-WR (tropical ENSO) teleconnection before (after) the 1980's.  Finally, the level and origin of seasonal forecast skill of wintertime precipitation anomalies over CSWA are examined using the statistical method of canonical correlation analysis (CCA). The preceding months’ (September–October) SST is used as predictors, and CCA experiments are performed for two sets of time periods, 1950/51–2014/15 and 1980/81–2014/15. For both prediction periods, the potential source of predictability originates largely from SST variations related to ENSO and the Pacific Decadal Oscillation (PDO). A higher (lower) correlation skill of 0.71 (0.38) is obtained between observations and cross-validated precipitation forecasts for the period 1980/81–2014/15 (1950/51–2014/15); which shows that ENSO played a dominant role in creating skillful predictions for CSWA wintertime precipitation in recent years.</p>


2010 ◽  
Vol 51 (54) ◽  
pp. 105-112 ◽  
Author(s):  
M.S. Shekhar ◽  
H. Chand ◽  
S. Kumar ◽  
K. Srinivasan ◽  
A. Ganju

AbstractThe high Himalayan mountains in the north of India are important sources for generating and maintaining the climate over the entire northern belt of the Indian subcontinent. They also influence extreme weather events, such as the western disturbances over the region during winter. The work presented here describes some current trends in weather and climate over the western Himalaya and suggests some possible explanations in the context of climate change. The work also shows how the special features of Indian orography in the western Himalaya affect climate change in the long term, changing the pattern of precipitation over the region. Data analysis of different ranges of the western Himalaya shows significant variations in temperature and snowfall trends in the past few decades. Possible explanations for the changing climate over the western Himalaya are proposed, in terms of variations in cloudiness. The possible effects of climate change on the number of snowfall days and the occurrences of western disturbances over the western Himalaya are also analysed.


Sign in / Sign up

Export Citation Format

Share Document