scholarly journals M ESTIMATION, S ESTIMATION, AND MM ESTIMATION IN ROBUST REGRESSION

Author(s):  
Y. Susanti ◽  
H. Pratiwi ◽  
S. Sulistijowati H. ◽  
T. Liana
2022 ◽  
Vol 18 (2) ◽  
pp. 251-260
Author(s):  
Malecita Nur Atala Singgih ◽  
Achmad Fauzan

Crime incidents that occurred in Indonesia in 2019 based on Survey Based Data on criminal data sourced from the National Socio-Economic Survey and Village Potential Data Collection produced by the Central Statistics Agency recorded 269,324 cases. The high crime rate is caused by several factors, including poverty and population density. Determination of the most influential factors in criminal acts in Indonesia can be done with Regression Analysis. One method of Regression Analysis that is very commonly used is the Least Square Method. However, Regression Analysis can be used if the assumption test is met. If outliers are found, then the assumption test is not completed. The outlier problem can be overcome by using a robust estimation method. This study aims to determine the best estimation method between Maximum Likelihood Type (M) estimation, Scale (S) estimation, and Method of Moment (MM) estimation on Robust Regression. The best estimate of Robust Regression is the smallest Residual Standard Error (RSE) value and the largest Adjusted R-square. The analysis of case studies of criminal acts in Indonesia in 2019 showed that the best estimate was the S estimate with an RSE value of 4226 and an Adjusted R-square of 0.98  


2021 ◽  
pp. 1-13
Author(s):  
Ahmed H. Youssef ◽  
Amr R. Kamel ◽  
Mohamed R. Abonazel

This paper proposed three robust estimators (M-estimation, S-estimation, and MM-estimation) for handling the problem of outlier values in seemingly unrelated regression equations (SURE) models. The SURE model is one of regression multivariate cases, which have especially assumption, i.e., correlation between errors on the multivariate linear models; by considering multiple regression equations that are linked by contemporaneously correlated disturbances. Moreover, the effects of outliers may permeate through the system of equations; the primary aim of SURE which is to achieve efficiency in estimation, but this is questionable. The goal of robust regression is to develop methods that are resistant to the possibility that one or several unknown outliers may occur anywhere in the data. In this paper, we study and compare the performance of robust estimations with the traditional non-robust (ordinary least squares and Zellner) estimations based on a real dataset of the Egyptian insurance market during the financial year from 1999 to 2018. In our study, we selected the three most important insurance companies in Egypt operating in the same field of insurance activity (personal and property insurance). The effect of some important indicators (exogenous variables) issued by insurance corporations on the net profit has been studied. The results showed that robust estimators greatly improved the efficiency of the SURE estimation, and the best robust estimation is MM-estimation. Moreover, the selected exogenous variables in our study have a significant effect on the net profit in the Egyptian insurance market.


2018 ◽  
Vol 1 (1) ◽  
pp. 37
Author(s):  
Hasih Pratiwi ◽  
Yuliana Susanti ◽  
Sri Sulistijowati Handajani

Linear least-squares estimates can behave badly when the error distribution is not normal, particularly when the errors are heavy-tailed. One remedy is to remove influential observations from the least-squares fit. Another approach, robust regression, is to use a fitting criterion that is not as vulnerable as least squares to unusual data. The most common general method of robust regression is M-estimation. This class of estimators can be regarded as a generalization of maximum-likelihood estimation. In this paper we discuss robust regression model for corn production by using two popular estimators; i.e. Huber estimator and Tukey bisquare estimator.<br />Keywords : robust regression, M-estimation, Huber estimator, Tukey bisquare estimator


2014 ◽  
Vol 71 (1) ◽  
Author(s):  
Bello Abdulkadir Rasheed ◽  
Robiah Adnan ◽  
Seyed Ehsan Saffari ◽  
Kafi Dano Pati

In a linear regression model, the ordinary least squares (OLS) method is considered the best method to estimate the regression parameters if the assumptions are met. However, if the data does not satisfy the underlying assumptions, the results will be misleading. The violation for the assumption of constant variance in the least squares regression is caused by the presence of outliers and heteroscedasticity in the data. This assumption of constant variance (homoscedasticity) is very important in linear regression in which the least squares estimators enjoy the property of minimum variance. Therefor e robust regression method is required to handle the problem of outlier in the data. However, this research will use the weighted least square techniques to estimate the parameter of regression coefficients when the assumption of error variance is violated in the data. Estimation of WLS is the same as carrying out the OLS in a transformed variables procedure. The WLS can easily be affected by outliers. To remedy this, We have suggested a strong technique for the estimation of regression parameters in the existence of heteroscedasticity and outliers. Here we apply the robust regression of M-estimation using iterative reweighted least squares (IRWLS) of Huber and Tukey Bisquare function and resistance regression estimator of least trimmed squares to estimating the model parameters of state-wide crime of united states in 1993. The outcomes from the study indicate the estimators obtained from the M-estimation techniques and the least trimmed method are more effective compared with those obtained from the OLS.


2017 ◽  
Vol 18 (1) ◽  
pp. 1
Author(s):  
Frida Murtinasari ◽  
Alfian Futuhul Hadi ◽  
Dian Anggraeni

SAE (Small Area Estimation) is often used by researchers, especially statisticians to estimate parameters of a subpopulation which has a small sample size. Empirical Best Linear Unbiased Prediction (EBLUP) is one of the indirect estimation methods in Small Area Estimation. The presence of outliers in the data can not guarantee that these methods yield precise predictions . Robust regression is one approach that is used in the model Small Area Estimation. Robust approach in estimating such a small area known as the Robust Small Area Estimation. Robust Small Area Estimation divided into several approaches. It calls Maximum Likelihood and M- Estimation. From the result, Robust Small Area Estimation with M-Estimation has the smallest RMSE than others. The value is 1473.7 (with outliers) and 1279.6 (without outlier). In addition the research also indicated that REBLUP with M-Estimation more robust to outliers. It causes the RMSE value with EBLUP has five times to be large with only one outlier are included in the data analysis. As for the REBLUP method is relatively more stable RMSE results.


2020 ◽  
Vol 5 (1) ◽  
pp. 98
Author(s):  
Dedy Susanto

This study aims to analyze the effect of economic strength, government debt, level of democracy, public trust in government, and level of happiness on corruption perception. Data consisting of 113 countries are used to determine the causal relationship between variables that have been collected. Robust Regression statistical test with Method of Moment (MM) estimation is used to analyze the relationship between variables. The test results show that economic strength, level of democracy, public trust, and level of happiness have a significant positive effect on corruption perception, while government debt has no significant effect on corruption perception. It can be concluded that the higher the economic strength, the level of democracy, the public trust, and the level of happiness, the higher the corruption perception in the country. High corruption perception indicates the cleanliness of the country from corruption.


2018 ◽  
Vol 48 (5) ◽  
pp. 1092-1107 ◽  
Author(s):  
Tao Yang ◽  
Colin M. Gallagher ◽  
Christopher S. McMahan

2012 ◽  
Vol 41 (8) ◽  
pp. 1282-1300 ◽  
Author(s):  
Yousung Park ◽  
Daeyoung Kim ◽  
Seongyong Kim

Sign in / Sign up

Export Citation Format

Share Document