Conceptual Approach to Creating a Complex System of Radiation Protection in the Conditions of Influence of High-Dose Fields of Ionizing Radiation

2019 ◽  
Vol 64 (6) ◽  
pp. 25-30
Author(s):  
V. Solov'ev ◽  
Andrey Bushmanov ◽  
V. Zorin ◽  
M. Grachev

The general approaches and criteria for substantiating the complex system of radiation protection (RP) of a human operator in the conditions of work in high-dose fields of ionizing radiation are considered. When planning work in such conditions, it is advisable to consider a set of measures of an organizational, technical and medical nature. Each activity has its measures own limits to reduce the dose load on the human operator or the development of adverse effects of radiation, and in some cases only a combination of them can give a certain protective effect, allowing to carry out the necessary activities in such conditions. If an operator works in mobile technical facilities (for example, a bulldozer, a caterpillar all-terrain vehicle, a helicopter, etc.) an important place is occupied by the issue of strengthening the technical component of the RP, primarily by engineering the design of additional shield elements. The biomedical rationale for the optimality of such protection is givenensuring maximum protection of vital organs, in the first place, red bone marrow, a significant volume of which is concentrated in the bones in the lumbar vertebrae, sacrum and pelvis. Several examples of the performance of professional activity of operator in the conditions of high-dose ionizing radiation fields and an expert evaluation of the limiting capabilities of the technical and medical component of the integrated RP are considered.

Author(s):  
Jeannette Kathrin Kraft ◽  
Peter Howells

Ionizing radiation continues to revolutionize the diagnostic process in medicine. However, it comes with risks to patients and staff. The amount of radiation patients receive is rising, mainly due to the use of high-dose examinations such as computed tomography and image-guided interventional procedures. In some countries, the amount of radiation a population receives from medical use is already larger than that from natural background radiation. A basic knowledge of radiation effects on the human body and radiation protection principles enables clinicians to assess potential risks associated with ionizing radiation and guides the choice of investigation.


Author(s):  
Jeannette Kathrin Kraft ◽  
Peter Howells

Ionizing radiation has been revolutionizing the diagnostic process in medicine. However, its use is not without risk, necessitating protection of patients and staff from potential harm. The amount of radiation patients receive continues to rise, mainly due to the use of high-dose examination techniques such as computed tomography and image-guided interventional procedures. In some countries, the amount of radiation a population receives from medical use is already larger than that from natural background radiation. Therefore, a basic knowledge of radiation effects on the human body, radiation protection principles, and relevant legislation is of great importance to all clinicians. This will enable doctors to assess potential risks associated with ionizing radiation in medical imaging and to make an informed choice when different investigations are available to assess a patient.


2021 ◽  
Vol 57 ◽  
pp. 1-7
Author(s):  
Annette Röttger ◽  
Attila Veres ◽  
Vladimir Sochor ◽  
Massimo Pinto ◽  
Michal Derlacinski ◽  
...  

Abstract. More than 23 million workers worldwide are occupationally exposed to ionizing radiation and all people in the world are exposed to environmental radiation. The mean exposure, that is the mean annual dose of per person, is dominated by medical applications and exposure to natural sources. Due to recent developments in healthcare, e.g. the increasing application of ionising radiation in medical imaging with relative high doses like CT, and modern high dose applications (for example CT angiography), the exposure due to medical application has risen. Additionally, the changes in living conditions increase the exposure to natural radioactivity also: More living time is spent in buildings or in an urban environment, which causes higher exposure to Naturally Occurring Radioactive Materials (NORM) in building materials and higher exposure to radon. The level of radon activity concentration in buildings is far higher than in the environment (outdoor). This effect is often amplified by modern energy-efficient buildings which reduce the air exchange and thus increase the radon indoor activity concentration. In summary both medical application of ionizing radiation and natural sources are responsible for the increase of the mean annual exposure of the population. The accurate measurement of radiation dose is key to ensuring safety but there are two challenges to be faced: First, new standards and reference fields are needed due to the rapid developments in medical imaging, radiotherapy and industrial applications. Second, direct communication channels are needed to ensure that information on best practice in measurements reaches effectively and quickly the people concerned. It is therefore necessary to allow for an international exchange of information on identified problems and solutions. Consequently, a European Metrology Network (EMN) for radiation protection under the roof of EURAMET is in the foundation phase. This network EMN for Radiation Protection is being prepared by the project EMPIR 19NET03 supportBSS. The project aims to prepare this EMN by addressing this issue through the identification of stakeholder research needs and by implementing a long-term ongoing dialogue between stakeholders and the metrology community. The EMN will serve as a unique point of contact to address all metrological needs related to radiation protection and it will relate to all environmental processes where ionising radiation and radionuclides are involved. A Strategic Research Agenda and two roadmaps are in development, covering the metrology needs of both the Euratom Treaty and the EU Council Directive 2013/59/EURATOM pinning down the basic safety standards for protection against the dangers arising from exposure to ionizing radiation. Furthermore, long-term knowledge sharing, and capacity building will be supported and a proposal for a sustainable joint European metrology infrastructure is under way. This will significantly strengthen the radiation protection metrology and support radiation protection measures. The final goal of the network project is a harmonised, sustainable, coordinated and smartly specialised infrastructure to underpin the current and future needs expressed in the European regulations for radiation protection.


Astrobiology ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 154-162 ◽  
Author(s):  
Joachim Meeßen ◽  
Theresa Backhaus ◽  
Annette Brandt ◽  
Marina Raguse ◽  
Ute Böttger ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Sanggam Ramantisan ◽  
◽  
Siti Akbari Pandaningrum ◽  
Suwardi Suwardi ◽  
Syarifudin Syarifudin ◽  
...  

Ionizing radiation safety in the medical field, referred to as radiation safety, is an action taken to protect patients, workers, community members, and the environment from the dangers of radiation. One of the efforts to achieve this is by increasing the qualifications of radiation workers in understanding and implementing radiation protection and safety through ionizing radiation safety and security training initiated by the Radiation Protection Officer (PPR) team at Dr. RSUP. Kariadi Semarang. During the current pandemic, implemented the training by modifying what was previously done using face-to-face and field practice into online delivery of material and making videos as a substitute for field practice. As a result, these activities can run well and smoothly. The impression from the training participants stated that this training was beneficial and should be done regularly. Keywords: training, ionizing radiation, radiation protection officer


2013 ◽  
Vol 4 (1) ◽  
pp. 29-42
Author(s):  
Gabriel Doménech Pascual

Private scientific organizations exert a great deal of influence in the regulation of some technological risks. The high level of expertise of their members is arguably a good reason for them to participate in making and monitoring risk regulations, in order to adjust these to scientific progress. Nevertheless, there are also sound reasons why governments shouldn’t uncritically follow the views expressed by such organizations. Taking the role played by the International Commission on Non–Ionizing Radiation Protection in the regulation of electromagnetic fields as an illustrative example, this paper shows that private scientific organizations such as these are structurally less well suited than democratic authorities when it comes to managing those risks.


2010 ◽  
Vol 49 ◽  
pp. S167
Author(s):  
Abdelahad Khajo ◽  
Ruth A Bryan ◽  
Matthew Friedman ◽  
Arturo Casadevall ◽  
Ekaterina Dadachova ◽  
...  
Keyword(s):  

Author(s):  
Nataliya Uzlenkova

The review systematized the current data on new classes of pharmacological compounds and biologically active substances in the field of radiation protection in Ukraine, as well as abroad. Methodological approaches and the importance of using appropriate animal models in the development of new pharmacological drugs for radiation protection are described, specifically in the cases when it is impossible to conduct full clinical trials on patients. Current views on the division of pharmacological agents into radioprotectors, radiomitigators, and therapeutic radiation protection agents are examined. The changes in the hematopoietic tissue, gastrointestinal tract and neurovascular system that occur after acute radiation exposure are also described. Particular attention is paid to pharmacological agents that can protect against acute exposure to ionizing radiation by limiting the risk of radiation mortality from the hematological and gastrointestinal forms of radiation syndrome. Results of the effectiveness of tolerant antioxidants with a wide spectrum of biological activity as promising agents for the prevention of acute and delayed radiation-induced pathology, in particular, in lung tissue, are presented. Possible molecular mechanisms of the radioprotective effect of pharmacological compounds on experimental models of total and local radiation exposure are discussed. The effectiveness of the therapeutic use of growth factors and recombinant cytokines in acute bone marrow suppression аfter accidental radiation exposure is shown. The possibilities of cell therapy with myeloid progenitor cells mobilized by tocopherol succinate hematopoietic/progenitor cells and bone marrow mesenchymal stromal cells in acute radiation injuries are shown. Special attention is paid to the importance of improving such methodological approaches and regulatory requirements when introducing into practice new radiation protection facilities in Ukraine. Key words: radiation protection, ionizing radiation, pharmacological agents, acute radiation syndrome. For citation: Uzlenkova NE. New pharmacological means of radiation protection (literature review). Journal of the National Academy of Medical Sciences of Ukraine. 2019;25(3) :268–77


Sign in / Sign up

Export Citation Format

Share Document