scholarly journals Coal Mine Methane Utilization in Gas Turbine Units for Electricity and Heat Production

2015 ◽  
Vol 4 (5) ◽  
pp. 41-48 ◽  
Author(s):  
Кулаков ◽  
D. Kulakov ◽  
Щёголев ◽  
N. Shchegolev ◽  
Тумашев ◽  
...  

Coal mining is accompanied by the release of coal mine methane. Its emissions into the atmosphere within methane-air mixture have a negative impact on the ecological situation. The modern approach involves the use of methane-air-mixture for heat boilers or units to generate electricity. For the generation of heat and electrical energy the coal mine methane could be used in cogeneration gas turbine plants with an altered sequence of processes. Thermo — and gas dynamics studies were conducted in a wide range of parameters of gas turbine plants. For small power plants recommended are: 2.8 compression ratio, turbine inlet — 1173 K, gas cooler inlet temperature — 303 K, 0.8 regeneration ratio. In this case the electrical efficiency of gas turbine plant is 25–26% and even 63–64% if produced heat is counted. Cogeneration gas turbine plant with an altered sequence of process has smaller capital and operating costs compared to traditional gas turbine unit. The use of methane-air mixture as fuel in such gas turbine units increases the profitability of coal mining and improves the ecological situation in the region.

1978 ◽  
Vol 100 (4) ◽  
pp. 640-646 ◽  
Author(s):  
P. Donovan ◽  
T. Cackette

A set of factors which reduces the variability due to ambient conditions of the hydrocarbon, carbon monoxide, and oxides of nitrogen emission indices has been developed. These factors can be used to correct an emission index to reference day ambient conditions. The correction factors, which vary with engine rated pressure ratio for NOx and idle pressure ratio for HC and CO, can be applied to a wide range of current technology gas turbine engines. The factors are a function of only the combustor inlet temperature and ambient humidity.


Author(s):  
James Spelling ◽  
Björn Laumert ◽  
Torsten Fransson

A dynamic simulation model of a hybrid solar gas-turbine power plant has been developed, allowing determination of its thermodynamic and economic performance. In order to examine optimum gas-turbine designs for hybrid solar power plants, multi-objective thermoeconomic analysis has been performed, with two conflicting objectives: minimum levelized electricity costs and minimum specific CO2 emissions. Optimum cycle conditions: pressure-ratio, receiver temperature, turbine inlet temperature and flow rate, have been identified for a 15 MWe gas-turbine under different degrees of solarization. At moderate solar shares, the hybrid solar gas-turbine concept was shown to provide significant water and CO2 savings with only a minor increase in the levelized electricity cost.


Author(s):  
Wookyung Kim ◽  
Jeffrey Cohen

The central objective of this study is to investigate the effectiveness of implementing a plasma discharge to improve combustor dynamics and flame stability. Specifically, a nano-second pulsed plasma discharge (NSPD) was applied to a premixed gaseous fuel/air dump combustor for mitigation of dynamic combustion instabilities with a minimal NOX penalty. This paper addresses the scaling of this technology from ambient pressure and temperature conditions to more realistic gas turbine combustor conditions. A model combustor operating at representative conditions of O (102) m/s flow velocity, ∼ 580 K combustor inlet temperature, and ∼ 5 atm in-combustor pressure was selected to simulate a typical low-power environment of future aero engine gas turbine combustors. Fully premixed methane or propane was utilized as a fuel. Similar to a previous ambient-pressure study, a significant reduction of pressure fluctuation level was observed, by a factor of 2X to 4X over a wide range of velocity at the baseline temperature and pressure. The plasma power required for the reduction increased linearly with increasing velocity. The change of fuel from methane to propane showed that propane requires significantly (2X) higher plasma power to achieve a similar level of noise reduction. It was also observed that the lean blowout (LBO) limit was significantly extended in the presence of the plasma, however, substantial incomplete combustion occurs in the extended regime. NOX measurements showed that the incremental NOX production due to the presence of the plasma was low (∼ < 1EINOX) in general, however, it increased with decreasing velocity and pressure, and increasing temperature.


2021 ◽  
Author(s):  
Farshid Zabihian

The first part of this thesis deals with greenhouse gas (GHG) emissions from fossil fuel-fired power stations. The GHG emission estimation from fossil fuel power generation industry signifies that emissions from this industry can be significantly reduced by fuel switching and adaption of advanced power generation technologies. In the second part of the thesis, steady-state models of some of the advanced fossil fuel power generation technologies are presented. The impacts of various parameters on the solid oxide fuel cell (SOFC) overpotentials and outputs are investigated. The detail analyses of operation of the hybrid SOFC-gas turbine (GT) cycle when fuelled with methane and syngas demonstrate that the efficiencies of the cycles with and without anode exhaust recirculation are close, but the specific power of the former is much higher. The parametric analysis of the performance of the hybrid SOFC-GT cycle indicates that increasing the system operating pressure and SOFC operating temperature and fuel utilization factor improves cycle efficiency, but the effects of the increasing SOFC current density and turbine inlet temperature are not favourable. The analysis of the operation of the system when fuelled with a wide range of fuel types demonstrates that the hybrid SOFC-GT cycle efficiency can be between 59% and 75%, depending on the inlet fuel type. Then, the system performance is investigated when methane as a reference fuel is replaced with various species that can be found in the fuel, i.e., H₂, CO₂, CO, and N₂. The results point out that influence of various species can be significant and different for each case. The experimental and numerical analyses of a biodiesel fuelled micro gas turbine indicate that fuel switching from petrodiesel to biodiesel can influence operational parameters of the system. The modeling results of gas turbine-based power plants signify that relatively simple models can predict plant performance with acceptable accuracy. The unique feature of these models is that they are developed based on similar assumptions and run at similar conditions; therefore, their results can be compared. This work demonstrates that, although utilization of fossil fuels for power generation is inevitable, at least in the short- and mid-term future, it is possible and practical to carry out such utilization more efficiently and in an environmentally friendlier manner.


Author(s):  
Iacopo Rossi ◽  
Valentina Zaccaria ◽  
Alberto Traverso

The use of model predictive control (MPC) in advanced power systems can be advantageous in controlling highly coupled variables and optimizing system operations. Solid oxide fuel cell/gas turbine (SOFC/GT) hybrids are an example where advanced control techniques can be effectively applied. For example, to manage load distribution among several identical generation units characterized by different temperature distributions due to different degradation paths of the fuel cell stacks. When implementing an MPC, a critical aspect is the trade-off between model accuracy and simplicity, the latter related to a fast computational time. In this work, a hybrid physical and numerical approach was used to reduce the number of states necessary to describe such complex target system. The reduced number of states in the model and the simple framework allow real-time performance and potential extension to a wide range of power plants for industrial application, at the expense of accuracy losses, discussed in the paper.


Author(s):  
W. J. Schulz ◽  
J. A. Mangiapane ◽  
H. Stargardter

The development of BORSIC®-Aluminum fan blades for elevated temperature application in gas-turbine power plants has been successfully demonstrated. These fan blades are over 40 percent lighter than the titanium blades currently in use. In addition, the high modulus of the reinforcement allows fan blades to be designed without partspan shrouds which will result in a 1 percent increase in fan efficiency. A full set of blades (36) fabricated by diffusion bonding were assembled in a rotor and tested in an aeromechanical rig with both a clean inlet and a distortion inlet at ambient inlet temperature as well as with a heated inlet to produce a blade temperature of 430 F. Total running time was 30.3 hrs, eight of which were at or above design speed. The rig ran for 0.5 hrs at design speed with a blade temperature of 430 F. No severe vibratory stresses were encountered with either a clean inlet or a 2E distortion screen.


Author(s):  
Xing L. Yan ◽  
Lawrence M. Lidsky

High generating efficiency has compelling economic and environmental benefits for electric power plants. There are particular incentives to develop more efficient and cleaner coal-fired power plants, to permit use of the world’s most abundant and secure energy source. This paper presents a newly-conceived power plant design, the Dual Brayton Cycle Gas Turbine PFBC, that yields 45% net generating efficiency and fires on a wide range of fuels with minimum pollution, of which coal is a particularly intriguing target for its first application. The DBC-GT design allows power plants based on the state-of-the-art PFBC technology to achieve substantially higher generating efficiencies while simultaneously providing modern gas turbine and related heat exchanger technologies access to the large coal power generation market.


Author(s):  
J. E. Donald Gauthier

This paper describes the results of modelling the performance of several indirectly fired gas turbine (IFGT) power generation system configurations based on four gas turbine class sizes, namely 5 kW, 50 kW, 5 MW and 100 MW. These class sizes were selected to cover a wide range of installations in residential, commercial, industrial and large utility power generation installations. Because the IFGT configurations modelled consist of a gas turbine engine, one or two recuperators and a furnace; for comparison purpose this study also included simulations of simple cycle and recuperated gas turbine engines. Part-load, synchronous-speed simulations were carried out with generic compressor and turbine maps scaled for each engine design point conditions. The turbine inlet temperature (TIT) was varied from the design specification to a practical value for a metallic high-temperature heat exchanger in an IFGT system. As expected, the results showed that the reduced TIT can have dramatic impact on the power output and thermal efficiency when compared to that in conventional gas turbines. However, the simulations also indicated that several configurations can lead to higher performance, even with the reduced TIT. Although the focus of the study is on evaluation of thermodynamic performance, the implications of varying configurations on cost and durability are also discussed.


Author(s):  
Mayank Maheshwari ◽  
Onkar Singh

Abstract Performance of gas/steam combined cycle power plants relies upon the performance exhibited by both gas based topping cycle and steam based bottoming cycle. Therefore, the measures for improving the performance of the gas turbine cycle and steam bottoming cycle eventually result in overall combined cycle performance enhancement. Gas turbine cooling medium affects the cooling efficacy. Amongst different parameters in the steam bottoming cycle, the deaerator parameter also plays its role in cycle performance. The present study analyzes the effect of deaerator’s operating pressure being varied from 1.6 bar to 2.2 bar in different configurations of simple and reheat gas/steam combined cycle with different cooling medium for fixed cycle pressure ratio of 40, turbine inlet temperature of 2000 K and ambient temperature of 303 K with varying ammonia mass fraction from 0.6 to 0.9. Analysis of the results obtained for different combined cycle configuration shows that for the simple gas turbine and reheat gas turbine-based configurations, the maximum work output of 643.78 kJ/kg of air and 730.87 kJ/kg of air respectively for ammonia mass fraction of 0.6, cycle efficiency of 54.55% and 53.14% respectively at ammonia mass fraction of 0.7 and second law efficiency of 59.71% and 57.95% respectively at ammonia mass fraction of 0.7 is obtained for the configuration having triple pressure HRVG with ammonia-water turbine at high pressure and intermediate pressure and steam turbine operating at deaerator pressure of 1.6 bar.


1998 ◽  
Vol 120 (3) ◽  
pp. 566-572 ◽  
Author(s):  
X. L. Yan ◽  
L. M. Lidsky

High generating efficiency has compelling economic and environmental benefits for electric power plants. There are particular incentives to develop more efficient and cleaner coal-fired power plants in order to permit use of the world’s most abundant and secure energy source. This paper presents a newly conceived power plant design, the Dual Brayton Cycle Gas Turbine PFBC, that yields 45 percent net generating efficiency and fires on a wide range of fuels with minimum pollution, of which coal is a particularly intriguing target for its first application. The DBC-GT design allows power plants based on the state-of-the-art PFBC technology to achieve substantially higher generating efficiencies, while simultaneously providing modern gas turbine and related heat exchanger technologies access to the large coal power generation market.


Sign in / Sign up

Export Citation Format

Share Document