Optimal Gas-Turbine Design for Hybrid Solar Power Plant Operation

Author(s):  
James Spelling ◽  
Björn Laumert ◽  
Torsten Fransson

A dynamic simulation model of a hybrid solar gas-turbine power plant has been developed, allowing determination of its thermodynamic and economic performance. In order to examine optimum gas-turbine designs for hybrid solar power plants, multi-objective thermoeconomic analysis has been performed, with two conflicting objectives: minimum levelized electricity costs and minimum specific CO2 emissions. Optimum cycle conditions: pressure-ratio, receiver temperature, turbine inlet temperature and flow rate, have been identified for a 15 MWe gas-turbine under different degrees of solarization. At moderate solar shares, the hybrid solar gas-turbine concept was shown to provide significant water and CO2 savings with only a minor increase in the levelized electricity cost.

Author(s):  
James Spelling ◽  
Björn Laumert ◽  
Torsten Fransson

A dynamic simulation model of a hybrid solar gas-turbine power plant has been developed, allowing determination of its thermodynamic and economic performance. In order to examine optimum gas-turbine designs for hybrid solar power plants, multiobjective thermoeconomic analysis has been performed, with two conflicting objectives: minimum levelized electricity costs and minimum specific CO2 emissions. Optimum cycle conditions: pressure-ratio, receiver temperature, turbine inlet temperature and flow rate, have been identified for a 15 MWe gas-turbine under different degrees of solarization. At moderate solar shares, the hybrid solar gas-turbine concept was shown to provide significant water and CO2 savings with only a minor increase in the levelized electricity cost.


Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
F. Jime´nez-Espadafor ◽  
A. Mun˜oz ◽  
T. Sa´nchez

The development of high efficiency solar power plants based on gas turbine technology presents two problems, both of them directly associated with the solar power plant receiver design and the power plant size: lower turbine intake temperature and higher pressure drops in heat exchangers than in a conventional gas turbine. To partially solve these problems, different configurations of combined cycles composed of a closed cycle carbon dioxide gas turbine as topping cycle have been analyzed. The main advantage of the Brayton carbon dioxide cycle is its high net shaft work to expansion work ratio, in the range of 0.7–0.85 at supercritical compressor intake pressures, which is very close to that of the Rankine cycle. This feature will reduce the negative effects of pressure drops and will be also very interesting for cycles with moderate turbine inlet temperature (800–1000 K). Intercooling and reheat options are also considered. Furthermore, different working fluids have been analyzed for the bottoming cycle, seeking the best performance of the combined cycle in the ranges of temperatures considered.


Author(s):  
Anoop Kumar Shukla ◽  
Onkar Singh

Gas/steam combined cycle power plants are extensively used for power generation across the world. Today’s power plant operators are persistently requesting enhancement in performance. As a result, the rigour of thermodynamic design and optimization has grown tremendously. To enhance the gas turbine thermal efficiency and specific power output, the research and development work has centered on improving firing temperature, cycle pressure ratio, adopting improved component design, cooling and combustion technologies, and advanced materials and employing integrated system (e.g. combined cycles, intercooling, recuperation, reheat, chemical recuperation). In this paper a study is conducted for combining three systems namely inlet fogging, steam injection in combustor, and film cooling of gas turbine blade for performance enhancement of gas/steam combined cycle power plant. The evaluation of the integrated effect of inlet fogging, steam injection and film cooling on the gas turbine cycle performance is undertaken here. Study involves thermodynamic modeling of gas/steam combined cycle system based on the first law of thermodynamics. The results obtained based on modeling have been presented and analyzed through graphical depiction of variations in efficiency, specific work output, cycle pressure ratio, inlet air temperature & density variation, turbine inlet temperature, specific fuel consumption etc.


Author(s):  
Mayank Maheshwari ◽  
Onkar Singh

Abstract Performance of gas/steam combined cycle power plants relies upon the performance exhibited by both gas based topping cycle and steam based bottoming cycle. Therefore, the measures for improving the performance of the gas turbine cycle and steam bottoming cycle eventually result in overall combined cycle performance enhancement. Gas turbine cooling medium affects the cooling efficacy. Amongst different parameters in the steam bottoming cycle, the deaerator parameter also plays its role in cycle performance. The present study analyzes the effect of deaerator’s operating pressure being varied from 1.6 bar to 2.2 bar in different configurations of simple and reheat gas/steam combined cycle with different cooling medium for fixed cycle pressure ratio of 40, turbine inlet temperature of 2000 K and ambient temperature of 303 K with varying ammonia mass fraction from 0.6 to 0.9. Analysis of the results obtained for different combined cycle configuration shows that for the simple gas turbine and reheat gas turbine-based configurations, the maximum work output of 643.78 kJ/kg of air and 730.87 kJ/kg of air respectively for ammonia mass fraction of 0.6, cycle efficiency of 54.55% and 53.14% respectively at ammonia mass fraction of 0.7 and second law efficiency of 59.71% and 57.95% respectively at ammonia mass fraction of 0.7 is obtained for the configuration having triple pressure HRVG with ammonia-water turbine at high pressure and intermediate pressure and steam turbine operating at deaerator pressure of 1.6 bar.


Author(s):  
Onkar Singh ◽  
R. Yadav

Combined cycle based power plants and their development and application for energy efficient base load power generation necessitates enforced cooling to maintain the topping cycle gas turbine blade temperature at permissible levels, attributed to the increased turbine inlet temperature and compressor pressure ratio, for the improved performance and reliability of combined cycle. The mathematical model based on expansion path inside gas turbine considering dilution of mainstream and aerodynamic mixing losses for a range of cooling medium has been developed based on internal, film, transpiration cooling technologies and a combination of these. It is found that the appreciation of a cycle configuration as well as the optimum pressure ratio and peak temperature vary significantly with types of cooling technology adopted. Steam cooling for rotor appears to be a very potential cooling medium, when employed with an appropriate cooling technology. This paper deals with the thermodynamic analysis of turbine cooling using, different means of cooling i.e. air, water and steam.


2020 ◽  
Vol 5 (12) ◽  
pp. 39-45
Author(s):  
Basharat Salim ◽  
Jamal Orfi ◽  
Shaker Saeed Alaqel

The proper utilization of all the available forms of energy resources has become imminent to meet the power requirement and energy demand in both the developed and developing countries of the world. Even though the emphasis is given to the renewable resources in most parts of the world, but fossil fuels will still remain the main resources of energy as these can meet both normal and peak demands. Saudi Arab has number of power plant based on natural gas and fuel that are spread in all its regions. These power plants have aeroderivative gas turbine units supplied by General Electric Company as main power producing units. These units work on dual fuel systems. These units work as simple gas turbine units to meat peak demands and as part of combined cycle otherwise. The subject matter of this study is the performance of one of the units of a power plant situated near Riyadh city of Saudi Arab. This unit also works both as simple gas turbine unit and as a part of combined cycle power plant unit. A parametric based performance evaluation of the unit has been carried out to study both energetic and exergetic performance of the unit for both simple and combined cycle operation. Effect of compressor inlet temperature, turbine inlet temperature, pressure ratio of the compressor, the stage from which bleed off air have been taken and percentage of bleed off air from the compressor on the energetic and exergetic performance of the unit have been studied. The study reveals that all these parameters effect the performance of the unit in both modes of operation.


Author(s):  
P. Esna Ashari ◽  
V. Nayyeri ◽  
K. Sarabchee

Many factories in industry such as petrochemical plants, oil refineries and power plants need heat and power to support their process. This demand can be provided by a combined heat and power cycle (CHP) in the factory site. Some factories use gas turbine cycle to provide heat and power. Emissions from gas turbines, produced by burning fossil fuels in the combustion chambers, have important effects on air pollution. This is a significant problem in many developed and developing countries. Parameters such as inlet temperature and pressure ratio are the most effective parameters in gas turbine emission. By selecting an appropriate gas turbine, emission could be reduced to some extent. Further studies indicate that there is an optimum pressure ratio, which minimizes emissions.


Author(s):  
Raphaël Sandoz ◽  
James Spelling ◽  
Björn Laumert ◽  
Torsten Fransson

A thermoeconomic model of a novel hybrid solar gas-turbine power plant with an air-based bottoming cycle has been developed, allowing its thermodynamic, economic, and environmental performance to be analyzed. Multi-objective optimization has been performed to identify the trade-offs between two conflicting objectives: minimum capital cost and minimum specific CO2 emissions. In-depth thermoeconomic analysis reveals that the additional bottoming cycle significantly reduces both the levelized cost of electricity and the environmental impact of the power plant (in terms of CO2 emissions and water consumption) when compared to a simple gas-turbine power plant without bottoming cycle. Overall, the novel concept appears to be a promising solution for sustainable power generation, especially in water-scarce areas.


Author(s):  
Sepehr Sanaye ◽  
Younes Hamzeie ◽  
Mohammad Reza Malekian ◽  
Mohammad Reza Sohrabi

There is a rapid growth of electricity consumption in the world. This problem needs enough resources for capital investment for construction of new power plants and/or making all efforts to increase the thermal efficiency of existing power generation cycles. Therefore this situation has lead power generation industries to repower and modify the existing steam power plants which are constructed in the recent three or four decades. In this paper an important method for repowering of old steam power plants which uses a gas turbine is analyzed. Hot Wind Box (HWB) repowering method was technically and economically evaluated to repower the Besat steam power plant. This power plant was constructed and exploited in 1967 in Tehran. The optimum design parameters such as gas turbine power output, compressor and turbine isentropic efficiency, pressure ratio, and the ratio of turbine inlet temperature to compressor inlet temperature were found by defining an objective function the total cost per unit of repowered plant power output and using numerical search optimization technique for its minimizing. The objective function, the total cost, included initial or capital investment, operation and maintenance costs during plant life cycle. The numerical values of optimum design parameters and the results of the sensitivity analysis are reported.


Author(s):  
Ibrahim Sinan Akmandor ◽  
O¨zhan O¨ksu¨z ◽  
Sec¸kin Go¨kaltun ◽  
Melih Han Bilgin

A new methodology is developed to find the optimal steam injection levels in simple and combined cycle gas turbine power plants. When steam injection process is being applied to simple cycle gas turbines, it is shown to offer many benefits, including increased power output and efficiency as well as reduced exhaust emissions. For combined cycle power plants, steam injection in the gas turbine, significantly decreases the amount of flow and energy through the steam turbine and the overall power output of the combined cycle is decreased. This study focuses on finding the maximum power output and efficiency of steam injected simple and combined cycle gas turbines. For that purpose, the thermodynamic cycle analysis and a genetic algorithm are linked within an automated design loop. The multi-parameter objective function is either based on the power output or on the overall thermal efficiency. NOx levels have also been taken into account in a third objective function denoted as steam injection effectiveness. The calculations are done for a wide range of parameters such as compressor pressure ratio, turbine inlet temperature, air and steam mass flow rates. Firstly, 6 widely used simple and combined cycle power plants performance are used as test cases for thermodynamic cycle validation. Secondly, gas turbine main parameters are modified to yield the maximum generator power and thermal efficiency. Finally, the effects of uniform crossover, creep mutation, different random number seeds, population size and the number of children per pair of parents on the performance of the genetic algorithm are studied. Parametric analyses show that application of high turbine inlet temperature, high air mass flow rate and no steam injection lead to high power and high combined cycle thermal efficiency. On the contrary, when NOx reduction is desired, steam injection is necessary. For simple cycle, almost full amount of steam injection is required to increase power and efficiency as well as to reduce NOx. Moreover, it is found that the compressor pressure ratio for high power output is significantly lower than the compressor pressure ratio that drives the high thermal efficiency.


Sign in / Sign up

Export Citation Format

Share Document