MATHEMATICAL MODELING OF TRAFFIC FLOWS ON THE ROAD NETWORK CITY

Author(s):  
Кадасев ◽  
D. Kadasev ◽  
Коротнев ◽  
V. Korotnev

This article describes a practical method of constructing mathematical models of traffic flow, the most suitable for a particular city highway. The initial data are: instant speed, time, distance, flux density, intensity of movement of vehicles. Using the obtained data, built regression model, and conducted correlation analysis. The choice of the mathematical model that most faithfully describes the transport process was made on the basis of the correlation coefficient

2022 ◽  
Vol 1 (1) ◽  
pp. 63-71
Author(s):  
Vladimir Pryadkin ◽  
Artem Artemov ◽  
Pavel Kolyadin ◽  
A. Kolcov

The article presents a mathematical model of the destructive effect of a wide-profile tire on the roadway. The mathematical model makes it possible to adequately reproduce the effect of a wide-profile tire on the road surface, taking into account the load and parameters of the tire, as well as the structure of the road surface and the temperature state.


2010 ◽  
Vol 2 (6) ◽  
pp. 86-89
Author(s):  
Oksana Musyt ◽  
Oksana Nadtochij ◽  
Aleksandr Stepanchiuk ◽  
Andrej Beljatynskij

An intensive increase in road transport, particularly individual, in recent years has led to such consequences as increased time spent on travel, the number of forced stops, traffic accidents, the occurrence of traffic jams on the road network, reducing traffic speed and a deteriorated urban road network in cities. The most effective method for solving these problems is the use of graph theory, the main characteristics of which is reliability, durability and accessibility of a free as well as loaded network. Based on their analysis the methods for network optimization are proposed.


THE BULLETIN ◽  
2021 ◽  
Vol 389 (1) ◽  
pp. 14-17
Author(s):  
A.А. Suleimen ◽  
G.B. Kashaganova ◽  
G.B. Issayeva ◽  
B.R. Absatarova ◽  
M.C. Ibraev

One of the most pressing problems of large cities is the problem of traffic management of vehicles. The reason for this problem is an imperfect way to manage traffic flows. Traffic light regulation is of particular importance in traffic management. Most modern traffic light control systems operate at set time intervals and are not able to cope with the constantly changing situation on the road. A promising direction for solving this problem is to optimize the system using artificial neural networks. The advantage of neural networks is self-learning, which allows the system to adapt to the changing situation on the road. Despite numerous attempts, it has not yet been possible to obtain a high-quality mathematical model of urban traffic management. This model should determine the functional dependence of transport flow parameters on control parameters. Nowadays, traffic flows are regulated everywhere by means of traffic lights. If we can get a fairly accurate mathematical model of traffic flows, we can determine the optimal duration of the traffic signal phases to achieve the maximum capacity of the road network node. A fairly accurate mathematical model of traffic management that works in predictive mode will display an estimate of the optimal control parameters, as well as make correct decisions in emergency situations. Well-known mathematical models of road traffic take into account only the average values of traffic flows, and not the exact number of cars on each road section at a particular time.


2019 ◽  
Vol 16 (6) ◽  
pp. 670-679 ◽  
Author(s):  
I. E. Agureev ◽  
D. A. Yurchenko

Introduction. The load models of the road network make it possible to understand a lot of the transport, social, environmental, and other city problems. Creating transport models requires knowledge of the traffic flows’ formation and functioning. The paper formulates a goal and poses tasks for the research conducting of the adjoining territories of residential areas in Tula as one of the urban traffic flows’ sources and of the identifying patterns of the parking places near houses’ influence on the road network loading.Materials and methods. The basis of the research was the development in the field of predictive simulation of automobile transport systems. The authors used complex of computer-aided design “TransNet”, which allowed adjusting the initial data in the base model by the results of the parking places’ functioning.Discussion and conclusions. As a result, the improved transport model of Tula allows making the forecast for determining the main parameters of the transport system taking into account the dynamics of vehicles’ local area departure at different time intervals. Moreover, the proposed methodological tools and algorithm for solving the problem of the road network loading in a quasi-dynamic setting helps to solve existing transport problems and to improve the traffic organization.The authors have read and approved the final manuscript. Financial transparency: the authors have no financial interest in the presented materials or methods. There is no conflict of interest.


2016 ◽  
Vol 134 ◽  
pp. 153-156 ◽  
Author(s):  
Evgeniya Ugnenko ◽  
Elena Uzhvieva ◽  
Yelizaveta Voronova

Author(s):  
V.P. Sidorov ◽  
P.Yu. Sitnikov ◽  
V.А. Rubtzov

The spaces of Russian cities (the centers of the subjects of the Federation - first of all) have changed significantly due to the growth in housing construction over the past one and a half - two decades. More than 100, mainly multi-storey residential buildings have been built and are under construction in the capital of the Udmurt Republic - Izhevsk. The settlement of new buildings will significantly change the geography of the settlement of the population and the density of the population in individual neighborhoods of the city. The rapid mass construction of buildings creates, in particular, a transportation problem. The transport system is one of the most important components of urban infrastructure. The changes in the geography of the population settlement will lead to changes in the geography of the intensity of traffic flows, to which the city’s road network may not be ready. The problem of such unavailability is due to financial, administrative and technical reasons. After the first and second phases of construction of housing complexes the situation on many important sections of the Izhevsk road network will become significantly more complicated, and the likelihood of road congestion will increase in the next 4-5 years. The authors have developed and applied a methodology for assessing existing traffic flows along the road network, as well as a method for predicting the intensity and directions of prospective traffic flows that will arise during the implementation of construction phases. The “12 micro district” of the city of Izhevsk as a geographical object of research was chosen. The assessment of existing traffic flows was carried out - at the first stage. A forecast was made of traffic on the road network inside and around the perimeter of the “12 micro district” - at the second stage. The results obtained have made it possible to identify the most problematic sections of the street and road network at present and in the near future. The recommendations to overcome the problem situations that were taken to action by the developer were made.


2021 ◽  
Author(s):  
V.I. Pryadkin ◽  
◽  
K.A. Shavirin ◽  
A.Yu. Kolcov ◽  
◽  
...  

The article presents a mathematical model of the destructive effect of a wide-profile tire on the roadway. The mathematical model makes it possible to adequately reproduce the effect of a wide-profile tire on the road surface, taking into account the load and parameters of the tire, as well as the structure of the road surface and the temperature state.


2020 ◽  
pp. 002252662097950
Author(s):  
Fredrik Bertilsson

This article contributes to the research on the expansion of the Swedish post-war road network by illuminating the role of tourism in addition to political and industrial agendas. Specifically, it examines the “conceptual construction” of the Blue Highway, which currently stretches from the Atlantic Coast of Norway, traverses through Sweden and Finland, and enters into Russia. The focus is on Swedish governmental reports and national press between the 1950s and the 1970s. The article identifies three overlapping meanings attached to the Blue Highway: a political agenda of improving the relationships between the Nordic countries, industrial interests, and tourism. Political ambitions of Nordic community building were clearly pronounced at the onset of the project. Industrial actors depended on the road for the building of power plants and dams. The road became gradually more connected with the view of tourism as the motor of regional development.


2021 ◽  
Vol 43 (2) ◽  
pp. 262-278
Author(s):  
Ariane Dupont-Kieffer ◽  
Sylvie Rivot ◽  
Jean-Loup Madre

The golden age of road demand modeling began in the 1950s and flourished in the 1960s in the face of major road construction needs. These macro models, as well as the econometrics and the data to be processed, were provided mainly by engineers. A division of tasks can be observed between the engineers in charge of estimating the flows within the network and the transport economists in charge of managing these flows once they are on the road network. Yet the inability to explain their decision-making processes and individual drives gave some room to economists to introduce economic analysis, so as to better understand individual or collective decisions between transport alternatives. Economists, in particular Daniel McFadden, began to offer methods to improve the measure of utility linked to transport and to inform the engineering approach. This paper explores the challenges to the boundaries between economics and engineering in road demand analysis.


Sign in / Sign up

Export Citation Format

Share Document