scholarly journals PRODUCTIVITY AND QUALITY EVALUATION OF TARRAGON AND THYME GROWN UNDER ARTIFICIAL LIGHT

2022 ◽  
Vol 16 (4) ◽  
pp. 24-29
Author(s):  
Petr Makarov ◽  
Tatyana Makarova ◽  
Zoya Samoylenko ◽  
Natalya Gulakova ◽  
Inessa Kravchenko

The research aimed at evaluation of productivity and quality of tarragon and thyme medicinal material was carried out on hydroponic installations during 2019-2020. The objects under study were Monarkh and Gudvin tarragon varieties as well as Medok and Zmeyka thyme varieties. The plants were grown in mineral cotton substratum. Fertikea Hydro complex fertiliser with microelements and calcium nitrate were used. The growing conditions: ambient temperature +22…+25℃, solution temperature +20℃, ambient humidity 55…65%. Experiment regimens: growing under white LEDs (luminous flux 8000 lm, color temperature 4000 K, PPF 165 mkmol/s/m2) and color LEDs (combination of red, blue and white LEDs (32:16:32), luminous flux 6573 lm, PPF 143 mkmol/s/m2), for 16-hour light regimen. We found that thyme grown on a vertical hydroponic system increase its biomass 2.0…3.5 times compared to the conventional growing. The highest productivity of Zmeyka thyme variety is reached under white light, while for both the tarragon varieties and Medok thyme variety it is reached under coloured LEDs. Chlorophyll-a content in green biomass is a little higher under coloured LEDs for Zmeyka thyme variety and Gudvin tarragon variety, while the reverse trend is observed for Monarkh tarragon variety. All the varieties show higher chlorophyll-b content under coloured LEDs. Combined chlorophyll-a and chlorophyll-b content increases under coloured LEDs for the thyme varieties and Gudvin tarragon variety. Monarkh tarragon variety shows the highest combined chlorophyll content under white LEDs. Carotenoid concentration in Medok thyme variety and Monarkh tarragon variety is higher under white LEDs and it is higher under color LEDs for the rest of the varieties. Flavonoids in the studied varieties accumulate statistically better (1.5…3.0 times) under white LEDs

Author(s):  
P.N. Makarov ◽  
◽  
T.A. Makarova ◽  
Z.A. Samoylenko ◽  
N.M. Gulakova ◽  
...  

This paper discusses the productivity evaluation results (shoot length, shoot number, leaf size, and yields) of hy-droponically grown perforate St. John’s wort (Hypericum perforatum L.). Hydroponic technique enables year-round growing of this medicinal plant preserving natural plant population in the Khanty-Mansiysk Autonomous District -Yugra; perforate St. John’s wortis listed in the District’s Red Book as the species that should be closely monitored in its natural habitat. A vertical ebb-and-flow hydroponic unit was used for growing. The research target was the Optimist variety of perforate St. John’s wort. Generally ac-cepted research methods were applied. Phytopathological evaluation of the perforate St. John’s wort plantation re-vealed low level of infestation with fusarium disease (less than 5%). The experiment showed that the plants reached the best values of all growth indices when grown under white lights of luminous flux of 8000 lm, color temperature of 4000 K, and РРF of 165 μmol s m2. Moreover, lighting with white LEDs stimulates transition of growing plants to flowering stage on the 97th day after planting and increas-es yield to 3.12 kg m2. The variety Optimist variety of perfo-rate St. John’s wort in hydroponic environment forms creeping, aggressively branching shoots that should be considered during growing.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 46
Author(s):  
Paweł Kondzior ◽  
Damian Tyniecki ◽  
Andrzej Butarewicz

The purpose of this paper is to determine the influence of color temperature of Light Emitting Diode (LED) diodes and illumination intensity on the content of photosynthetic pigments of chlorophyll a, chlorophyll b and carotenoids in Chlorella vulgaris algae cells. Choosing the right color temperature and intensity of illumination can favorably affect the growth of algae. In particular, it can contribute to the efficiency of the photosynthesis process and the amount of produced biomass from Chlorella vulgaris algae. In the spectrophotometric studies, the highest content of chlorophyll a, chlorophyll b and carotenoids was found in cultures illuminated with very cold white light (8500 K) with an intensity of 500 μmol/m2s. The highest measured content of chlorophyll a (Chl a) pigments was 48.29 mg/L, Chl b pigment was 23.25 mg/L and carotenoids pigment was 12.65 mg/L; the smallest content of pigments for Chl a (11.48 mg/L), Chl b (4.69 mg/L) and carotenoids (3.03 mg/L) was found in the sample illuminated with warm white light (3200 K) with an intensity of 50 μmol/m2s. The highest amount of dry organic matter amounting to 2.0 g/L was found in a sample illuminated with warm white light (3200 K) with an intensity of 250 μmol/m2s, then 1.91 g dry organic mass (DOM)/L for very cold white light with an intensity of 250 μmol/m2s, and 1.48 g DOM/L for very cold white light with an intensity of 50 μmol/m2s. The obtained results show that a higher content of photosynthetic pigments does not directly affect the increase of the amount of dry organic matter.


Author(s):  
Nguyen Thi Phuong Loan ◽  
Nguyen Doan Quoc Anh

In this research paper, we introduced yellow-green MgCeAl11O19:Tb3+ asa new phosphor ingredient to adapt to the quality requirements onthe chromatic homogeneity and emitted luminous flux of modern multi-chip white LED lights (MCW-LEDs). The results from experiments and simulation show that employing MgCeAl11O19:Tb3+ phosphor can lead to much better optical properties and therefore is a perfect supporting material to achieve the goals of the research. When the MgCeAl11O19:Tb3+ phosphor is added into the phosphorus composite which already contains YAG: Ce3+ particles, and the silicone glue, it affects the optical properties significantly. In other words, the concentration of this phosphor can determine the efficiency of lumen output and chromatic homogeneity of WLEDs. In specific, as the concentration of MgCeAl11O19:Tb3+ go up, the luminous yield will increase accordingly, though there is an insignificant decrease in CQS. Moreover, if the MgCeAl11O19:Tb3+ concentration reduce a little bit, it is possible to better the correlated color temperature uniformity and lumen efficacy of LED packages. In addition, the Mie scattering theory, Monte Carlo simulation and LightTools 8.3.2 software are employed to analyze and simulate the LED packages’ structure as well as the phosphor compound.


In recent years, oil flax has been very popular in Ukraine. Different spheres of the use of culture indicate good adaptive opportunities for growing oil flax in different regions of Ukraine. The aim of this work is to study the content and ratio of the main photosynthetic pigments of the flax variety of oilseed Cyan grown in ontogenesis. Plants were grown in natural open ground. The number of pigments was determined by spectrophotometric method. This is research data on the content of the main photosynthetic pigments in flax of Tsian. The content of chlorophyll a, b and carotenoids was studied at three stages of development: at the stage of 8-10 leaves, budding, flowering. It was established that the amount of chlorophyll a exceeds the content of chlorophyll b at all stages of development. An increase in the pigment content during ontogenesis to the flowering stage was revealed, with the exception of chlorophyll b. At the stage of the at the stage of 8-10 leaves in the Tsian variety, the amount of chlorophyll a ranged from min 754.74 ± 63.768 μg/g, max 1582.82 ± 126.973 μg/g wet weight, the amount of chlorophyll b ranging from min 203.23 ± 17.549 to max 602.24 ± 46.577 μg g wet weight, and carotenoids from min 220.99 ± 18.388 to max 409.94 ± 37.572 μg/g fresh weight, depending on the year of study. In the budding phase, the minimum content of chlorophyll a was min 1444.87 ± 105.771, and the maximum max 2027.34 ± 174.258 μg/g wet weight, chlorophyll b: from min 553.23 ± 48.345 to max 1733.69 ± 109.675 μg/g raw weight, and carotenoids: from min 354.81 ± 26.759 to max 402.63 ± 26.765 μg/g wet weight, depending on the year of study. In the flowering phase, the following indicators were observed: chlorophyll a content from min 1804.43 ± 164.425 to max 2370.56 ± 207.589 μg/g wet weight, chlorophyll b from min 1055.24 ± 89.562 μg/g wet weight to max 1649.21 ± 107.258 μg/g, and carotenoids from min 472.19 ± 36.141 μg/g to max 519.3322 ± 39.911 μg/g, depending on the year of study. The ratio of the number of chlorophylls and the sum of chlorophylls to carotenoids varies depending on the stage of development of the variety and growing conditions.


2019 ◽  
Vol 9 (4) ◽  
pp. 675 ◽  
Author(s):  
Yung-Fang Chou ◽  
Chi-Feng Chen ◽  
Shang-Ping Ying ◽  
Yun-Ying Yeh

With the development of high-efficiency and high-power LEDs, they have become the most energy-efficient and environmentally friendly artificial light source. Phosphor-converted white LEDs are currently mainstream in the market. The remote phosphor is an effective way to enhance the conversion efficiency and lifetime of phosphor-converted LEDs. For applications of high-quality lighting and LCD backlights, the uniformity of angular correlated color temperature (CCT) is very important. This report explored a remote phosphor white LED with low angular CCT variance and high luminous efficiency by using TiO2 diffuser-loaded encapsulation. Experimental results revealed that for the TiO2 diffuser-loaded encapsulation remote phosphor white LED, the angular color uniformity could be improved by 31.82% and the luminous flux by 8.65%. Moreover, the mean CCTs of the TiO2 diffuser-loaded encapsulation and non-diffuser remote phosphor white LEDs were similar at a driving current of 350 mA. Finally, we showed that incorporating the TiO2 diffuser into the phosphor layer of the remote phosphor white LEDs, does not influence the reliability of the LED.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Guo-Feng Luo ◽  
Nguyen Thi Phuong Loan ◽  
Le Van Tho ◽  
Nguyen Doan Quoc Anh ◽  
Hsiao-Yi Lee

AbstractSiO2 particles and red-emitting CaMgSi2O6:Eu2+,Mn2+ phosphor have been added into a yellow phosphor compound YAG:Ce3+ to enhance the optical efficiency of white light LEDs whose average correlated color temperature (CCT) is in the range of 5600 K ÷ 8500 K. It was observed that altering CaMgSi2O6:Eu2+,Mn2+ concentration from 2 % to 30 % while maintaining 5 % of the SiO2 strongly influenced the color rendering index (CRI), color quality scale (CQS), and lumen efficiency of the compound. Besides, through the application of Monte Carlo simulation and Mie-scattering theory, it was possible to improve the optical properties by CaMgSi2O6:Eu2+,Mn2+ and SiO2 addition. The results provided a practical approach to achieve higher luminous efficiency and better color uniformity in remote-phosphor white LEDs (RP-WLEDs).


2017 ◽  
Vol 35 (3) ◽  
pp. 618-625
Author(s):  
Tran Hoang Quang Minh ◽  
Nguyen Huu Khanh Nhan ◽  
Nguyen Doan Quoc Anh ◽  
Hsiao-Yi Lee

AbstractThis paper investigates a method for improving the lighting performance of white light-emitting diodes (WLEDs), packaged using two separating remote phosphor layers, yellow-emitting YAG:Ce phosphor layer and red-emitting α-SrO·3B2O3:Sm2+ phosphor layer. The thicknesses of these two layers are 800 μm and 200 μm, respectively. Both of them have been examined at average correlated color temperatures (CCT) of 7700 K and 8500 K. For this two-layer model, the concentration of red phosphor has been varied from 2 % to 30 % in the upper layer, while in the lower layer the yellow phosphor concentration was kept at 15 %. It was found interesting that the lighting properties, such as color rendering index (CRI) and luminous flux, are enhanced significantly, while the color uniformity is maintained at a level relatively close to the level in one-layer configuration (measured at the same correlated color temperature). Besides, the transmitted and reflected light of each phosphor layer have been revised by combining Kubelka-Munk and Mie-Lorenz theories. Through the analysis, it is demonstrated that the packaging configuration of two-layered remote phosphor that contains red-emitting α-SrO·3B2O3:Sm2+ phosphor particles provides a practical solution to general WLEDs lighting.


2021 ◽  
Vol 10 (3) ◽  
pp. 1709-1717
Author(s):  
My Hanh Nguyen Thi ◽  
Phung Ton That

SiO2 nano-particles have been examined in a distant phosphor structure for the elevated luminous quality and better consistency of white light-emitting diodes with angular-dependent associated color temperature (CCT). The luminous scattering ability could be increased by applying SiO2 nano-particles contain silicone to the outside of the phosphorus coating. In specific, the strength of blue light at wide angles is increased and differences in CCT can be minimized. In addition, owing to the sufficient refractive indices of silicone-containing SiO2 nanoparticles between the air and phosphorus layers, the luminous flux was improved. This new configuration decreases angular-dependent CCT deviations in the range of -700 to 700 from 1000 to 420 K. In comparison, at a 120 mA driving current, the rise of lumen flux increased by 2.25% relative to an usual distant phosphor structure without SiO2 nano-particles. As a result, in a distant phosphor structure, the SiO2 nano-particles could not only enhance the uniformity of illumination but also enhance the output of light.


2018 ◽  
Vol 2 (1) ◽  
pp. 55
Author(s):  
Hoang Quang Minh Tran ◽  
Huu Khanh Nhan Nguyen ◽  
Hsiao-Yi Lee

In this paper, by mixing the red-emitting α-SrO·3B2O3:Sm2+ conversion phosphor to yellow-emitting YAG:Ce phosphor compound, an innovative recommendation for increasing optical performance of white LEDs (WLEDs) with remote packaging, which has an average correlated color temperature (CCT) of 700K and 8500K, is proposed and demonstrated. By varying α-SrO·3B2O3:Sm2+ concentration from 2% to 24 %, the obtained results indicated that color uniformity, color rendering index (CRI), color quality scale (CQS), and luminous flux could be improved significantly. The results demonstrated a prospective recommendation for manufacturing remote packaging phosphor WLEDs.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


1973 ◽  
Vol 37 ◽  
Author(s):  
N. Lust

Pigment content of ashes grown up under different circumstances - The pigment content (chlorophyll a, chlorophyll b,  xanthophyll and carotene) has been researched with ashes grown up under  different light circumstances and varying in age and height.     The results prove that the general laws concerning the influence of light  on the pigment content, don’t always work.     The phenomen is very complex. The light quantity is very important in some  cases, but insignificant in others. It seems origin and height of plants have  a strong influence. The results prove also the influence of the environment  is much higher on small plants as on big ones.     The research indicates finally the correlation between the green pigments,  the yellow pigments, and between the green pigments on the one side and the  yellow ones on the other side.


Sign in / Sign up

Export Citation Format

Share Document