scholarly journals Canonical structure of A and B maps

Quanta ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 34-41
Author(s):  
Sudha Sudha ◽  
B. N. Karthik ◽  
A. R. Usha Devi ◽  
A. K. Rajagopal

In their seminal 1961 paper, Sudarshan, Mathews and Rau investigated properties of the dynamical A and B maps acting on n-dimensional quantum systems. The nature of dynamical maps in open quantum system evolutions has attracted great deal of attention in the later years. However, the novel paper on the A and B dynamical maps has not received its due attention. In this tutorial article, we review the properties of A and B forms associated with the dynamics of finite dimensional quantum systems. In particular, we investigate a canonical structure associated with the A form and establish its equivalence with the associated B form. We show that the canonical structure of the A form captures the completely positive (not completely positive) nature of the dynamics in a succinct manner. This feature is illustrated through physical examples of qubit channels.Quanta 2021; 10: 34–41.

2014 ◽  
Vol 28 (30) ◽  
pp. 1430020 ◽  
Author(s):  
L. C. Wang ◽  
X. X. Yi

We review the scheme of quantum Lyapunov control and its applications into quantum systems. After a brief review on the general method of quantum Lyapunov control in closed and open quantum systems, we apply it into controlling quantum states and quantum operations. The control of a spin-1/2 quantum system, driving an open quantum system into its decoherence free subspace (DFS), constructing single qubit and two-qubit logic gates are taken to illustrate the scheme. The optimalization of the Lyapunov control is also reviewed in this article.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 905
Author(s):  
Nina Megier ◽  
Manuel Ponzi ◽  
Andrea Smirne ◽  
Bassano Vacchini

Simple, controllable models play an important role in learning how to manipulate and control quantum resources. We focus here on quantum non-Markovianity and model the evolution of open quantum systems by quantum renewal processes. This class of quantum dynamics provides us with a phenomenological approach to characterise dynamics with a variety of non-Markovian behaviours, here described in terms of the trace distance between two reduced states. By adopting a trajectory picture for the open quantum system evolution, we analyse how non-Markovianity is influenced by the constituents defining the quantum renewal process, namely the time-continuous part of the dynamics, the type of jumps and the waiting time distributions. We focus not only on the mere value of the non-Markovianity measure, but also on how different features of the trace distance evolution are altered, including times and number of revivals.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
S. Hernández-Gómez ◽  
S. Gherardini ◽  
F. Poggiali ◽  
F. S. Cataliotti ◽  
A. Trombettoni ◽  
...  

2015 ◽  
Vol 17 (38) ◽  
pp. 25629-25641 ◽  
Author(s):  
Xiaoqing Wang ◽  
Gerhard Ritschel ◽  
Sebastian Wüster ◽  
Alexander Eisfeld

We elucidate the difference between various parameter extraction methods and demonstrate sensitivity to molecular dynamics equilibration.


2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Zhao-Di Liu ◽  
Yong-Nan Sun ◽  
Bi-Heng Liu ◽  
Chuan-Feng Li ◽  
Guang-Can Guo ◽  
...  

Author(s):  
Y. Yugra ◽  
F. De Zela

Coherence and quantum correlations have been identified as fundamental resources for quantum information tasks. As recently shown, these resources can be interconverted. In multipartite systems, entanglement represents a prominent case among quantum correlations, one which can be activated from coherence. All this makes coherence a key resource for securing the operational advantage of quantum technologies. When dealing with open systems, decoherence hinders full exploitation of quantum resources. Here, we present a protocol that allows reaching the maximal achievable amount of coherence in an open quantum system. By implementing our protocol, or suitable variants of it, coherence losses might be fully compensated, thereby leading to coherence revivals. We provide an experimental proof of principle of our protocol through its implementation with an all-optical setup.


Sign in / Sign up

Export Citation Format

Share Document