scholarly journals The assessment of properties for selected factors in abrasive water jet process

2015 ◽  
Vol 21 (3) ◽  
pp. 203
Author(s):  
Anna Šúňová ◽  
Roman Šúň ◽  
Emil Spišák ◽  
Mária Franková

The article presents the current conditions of abrasive water jet cutting process and factors relative to the quality of cutting surface. The main goal of research was to evaluate the assessment of the cutting depth, corrugated bottom cutting edge and roughness of the specimens depending on selected factors such as cutting velocity and abrasive amount in the abrasive water jet process. Specimen were cut in four phases as a square. Main results were that the distance between water jet entering and water jet leaving is decreased with the increasing abrasive amount and by following lower cutting rates. The increasing of a cutting rate negatively effects the quality of the cut surface and the size of the distance between water jet entering and water jet leaving, because the increasing of a cutting rate increases also values of the mentioned parameters. As to the distance between water jet entering and water leaving, the abrasive amount of 200-250 g.min-1 at the rate of 50 mm.min-1 is considered to be optimal, but outside this range the influence of the abrasive amount impacts negatively, primarily on water jet entering and water jet leaving that has a direct influence on the corrugated bottom cutting edge.

Mechanik ◽  
2017 ◽  
Vol 90 (11) ◽  
pp. 997-999
Author(s):  
Rafał Kudelski

Quality of the technological part is one of the major problems of modern machine manufacturing. In many cases, components are manufactured from new construction materials with specific properties that are considered difficult to machining applying conventional technologies. Hence, to search for new technologies, including high-pressure abrasive water jet cutting in the context of the S355J2H steel elements manufacture, while maintaining the quality requirements of the machining, is the need. The results of tests on the accuracy of components made of S355J2H steel are presented as dependent on the water jet pressure, cutting feedrate and the amount of abrasive dozed, with constant element thickness. The accuracy of the design measure – regardless of dimensional accuracy – was the magnitude of the lateral sagging of the cut workpiece resulting from the specific mechanism of water jet removal mechanism.


2018 ◽  
Vol 178 ◽  
pp. 03004 ◽  
Author(s):  
Ioan Alexandru Popan ◽  
Nicolae Balc ◽  
Alina Popan ◽  
Alexandru Carean

The main objective of the paper consists in remanufacturing of a part, through Abrasive Water Jet Cutting, using a method of reverse engineering based on 3D scanning. The characteristics of this process, the equipment and the main applications are presented. The research starts with manufacturing of a master model made by CFRP. This master model is a complex part cut by abrasive water jet cutting. In scanning process was used the 3D Scanner Artec Space Spider and the point cloud was processed using Artec Studio 11 software. By using this new 3D model was manufactured a new part, with the same setup. The quality characteristics (accuracy and surface quality) of this part was compared with the master model. The paper presents the advantages and disadvantages of this reverse engineering method applied on abrasive water jet cutting process.


2013 ◽  
Vol 40 (2) ◽  
pp. 277-291 ◽  
Author(s):  
P. Jankovic ◽  
T. Igic ◽  
D. Nikodijevic

The process of the abrasive water jet cutting of materials, supported by the theories of fluid mechanics, abrasive wear and damage mechanics, is a high-tech technologies that provides unique capabilities compared to conventional machining processes. This paper, along the theoretical derivations, provides original contributions in the form of mathematical models of the quantity of the cut surface damage, expressed by the values of cut surface roughness. The particular part of this paper deal with the results of the original experimental research. The research aim was connected with the demands of industry, i.e. the end user. Having in mind that the conventional machining processes are not only lagging behind in terms of quality of cut, or even some requests are not able to meet, but with the advent of composite materials were not able to machine them, because they occurred unacceptable damage (mechanical damage or delamination, fiber pull-out, burning, frayed edges).


Author(s):  
Jana Moravčíková ◽  
Daynier Rolando Delgado Sobrino ◽  
Peter Košťál

Abstract The present paper discusses the impact of the speed of an abrasive water jet cutting process on some surface properties and morphology of the S235JRG1 steel. The values of the cutting speeds used for the analysis were of 100, 150 and 200 mm.min−1 respectively. A contact profile method was used to analyze the surface roughness during the conducted tests. In this study, the observed surface roughness parameters were the Ra, Rt and Rz, respectively. At the same time, these parameters were measured in three positions, i.e.: at the inlet (A), in the middle (B) and at the exit position (C) of the water jet nozzle with respect to the machined material. The experimental study showed that the roughness of the surface reached higher peaks and was more pronounced at the exit position (C) of the water jet. Similarly, it was also concluded that a better quality of the surface was achieved at a speed of 150 mm.min−1.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4801
Author(s):  
Marcin Romanowski ◽  
Czesław Łukianowicz ◽  
Marzena Sutowska ◽  
Wojciech Zawadka ◽  
Danil Yurievich Pimenov ◽  
...  

Despite extensive knowledge of the cutting methods described, no universal method has been developed so far for evaluating the technological quality of elements shaped by different cutting processes. The aim of the research described in this article was to fill this gap and to propose the author’s methodology for the assessment of the technological quality of the surface of X5CRNI18-10 steel shaped as a result of laser cutting and abrasive water jet cutting. A synthetic index of technological quality assessment of the surface after cutting CTQ (cutting technological quality) was proposed. Three groups of factors were taken into account in the assessment of technological quality of the surface after cutting: selected surface texture parameters (arithmetic mean deviation of the surface Sa and total height of the surface St), results of measurements of dimensional accuracy of cut elements (length deviation LD and width deviation WD) as well as indicators of surface morphology estimated on the basis of microscopic images of the surface after cutting (deformation intensity DI and identification of cutting zones ICZ). On the basis of CTQ values determined, the cutting results of both cutting methods were compared. The analyses presented in this paper proved that the CTQ index can be effectively used to compare the results of a cutting process conducted using different methods and under different conditions. The developed CTQ index is a universal valuation tool, allowing for quantitative evaluation of features related to the technological quality of cutting process results.


2014 ◽  
Vol 59 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Mariusz Młynarczuk ◽  
Marta Skiba ◽  
Libor Sitek ◽  
Petr Hlaváček ◽  
Alena Kožušníková

Abstract In recent years, water jet cutting technology has been being used more and more often, in various domains of human activity. Its numerous applications include cutting different materials - among them, rock materials. The present paper discusses the results of the research that aimed at determining - in a quantitative manner - the way in which the water jet cutting parameters (such as the traverse speed of the head, and the distance between the high-pressure inlet of the water jet and the cut material) influence the quality of the processed surface. Additionally, the impact of these parameters on the surface of various materials was investigated. The materials used were three granites differing with respect to the size of grains. In the course of the research, the standard parameters defined by the ISO norms were analyzed. It was also proposed that variograms be used to analyze the quality of the cut surface.


Sign in / Sign up

Export Citation Format

Share Document