A FAST, AUTOMATIC MESHING PROCEDURE FOR COMPOSITES WITH INTERPENETRATING GEOMETRY

2021 ◽  
Author(s):  
M. KEITH BALLARD ◽  
KEVIN HOOS ◽  
HARI ADLURU ◽  
ENDEL IARVE ◽  
DAVID MOLLENHAUER

For decades, finite element analysis (FEA) has served as a ubiquitous tool, allowing engineers and scientists to gain critical insights into the behavior of complex composite materials. Despite the wide adoption of FEA, creating a conforming mesh for the most complex composite material models, such as mesoscale models of 3D textiles or microscale models of composites with reinforcement and irregular voids, remains a significant challenge. Much of the difficulty lies in the fact that many tools that create realistic surface geometries through process simulation often result in complex interpenetrations between objects. This paper proposes a pipeline of algorithms, some adopted from the visualization community and some novel, to automatically create a conforming, high-quality tetrahedral mesh for composite materials with complex geometries that may overlap. The details of a novel algorithm used to identify volume, surface, and edge features, while avoiding the use of a tolerance, are provided. Additionally, the paper describes three different methods to remove overlaps between tows. Finally, the algorithms are applied to a simple case with two orthogonal tows that overlap where they cross, demonstrating the result at each step and revealing the advantages and disadvantages of each of the three overlap removal algorithms.

The main methods (pressing and winding) of the processing of hybrid polymer composites to obtain items were examined. Advantages and disadvantages of the methods were noted. Good combinations of different-module fibers (carbon, glass, boron, organic) in hybrid polymer materials are described, which allow one to prepare materials with high compression strength on the one hand, and to increase fracture energy of samples and impact toughness on the other hand.


2021 ◽  
Vol 11 (6) ◽  
pp. 2532
Author(s):  
Francesco Tornabene ◽  
Rossana Dimitri

The large use of composite materials and shell structural members with complex geometries in technologies related to various branches of engineering, has gained increased attention from scientists and engineers for the development of even more refined approaches, to investigate their mechanical behavior [...]


2013 ◽  
Vol 42 (4) ◽  
pp. 843-857 ◽  
Author(s):  
Maximilian Eder ◽  
Stefan Raith ◽  
Jalil Jalali ◽  
Alexander Volf ◽  
Markus Settles ◽  
...  

Author(s):  
Joonas Ponkala ◽  
Mohsin Rizwan ◽  
Panos S. Shiakolas

The current state of the art in coronary stent technology, tubular structures used to keep the lumen open, is mainly populated by metallic stents coated with certain drugs to increase biocompatibility, even though experimental biodegradable stents have appeared in the horizon. Biodegradable polymeric stent design necessitates accurate characterization of time dependent polymer material properties and mechanical behavior for analysis and optimization. This manuscript presents the process for evaluating material properties for biodegradable biocompatible polymeric composite poly(diol citrate) hydroxyapatite (POC-HA), approaches for identifying material models and three dimensional solid models for finite element analysis and fabrication of a stent. The developed material models were utilized in a nonlinear finite element analysis to evaluate the suitability of the POC-HA material for coronary stent application. In addition, the advantages of using femtosecond laser machining to fabricate the POC-HA stent are discussed showing a machined stent. The methodology presented with additional steps can be applied in the development of a biocompatible and biodegradable polymeric stents.


Author(s):  
Shiyong Yang ◽  
Kikuo Nezu

Abstract An inverse finite element (FE) algorithm is proposed for sheet forming process simulation. With the inverse finite element analysis (FEA) program developed, a new method for concurrent engineering (CE) design for sheet metal forming product and process is proposed. After the product geometry is defined by using parametric patches, the input models for process simulation can be created without the necessity to define the initial blank and the geometry of tools, thus simplifying the design process and facilitating the designer to look into the formability and quality of the product being designed at preliminary design stage. With resort to a commercially available software, P3/PATRAN, arbitrarily three-dimensional product can be designed for manufacturability for sheet forming process by following the procedures given.


2021 ◽  
pp. 100-109
Author(s):  
M.I. Minibaev ◽  
◽  
M.N. Usacheva ◽  
V.S. Dyshenko ◽  
V.A. Goncharov ◽  
...  

The article discusses devices for fixing sheet metal blanks from PCM: a perforated vacuum table, its design features, advantages and disadvantages. Based on these data, the upper part of the vacuum table was made for cutting samples for Iosipescu tests and dielectric tests. The article describes various types of tools for PCM processing and an experiment on the wear resistance of a diamond-like coated rasp cutter when milling carbon fiber reinforced plastic, carried out by foreign researchers.


Author(s):  
R. Villavicencio ◽  
Bin Liu ◽  
Kun Liu

The paper summarises observations of the fracture response of small-scale double hull specimens subjected to quasi-static impact loads by means of simulations of the respective experiments. The collision scenarios are used to evaluate the discretisation of the finite element models, and the energy-responses given by various failure criteria commonly selected for collision assessments. Nine double hull specimens are considered in the analysis so that to discuss the advantages and disadvantages of the different failure criterion selected for the comparison. Since a large scatter is observed from the numerical results, a discussion on the reliability of finite element analysis is also provided based on the present study and other research works found in the literature.


2016 ◽  
Vol 2 (1) ◽  
pp. 185-188 ◽  
Author(s):  
Tomasz Moszkowski ◽  
Thilo Krüger ◽  
Werner Kneist ◽  
Klaus-Peter Hoffmann

AbstractFinite element analysis (FEA) of electric current distribution in the pelvis minor may help to assess the usability of non-invasive surface stimulation for continuous pelvic intraoperative neuromonitoring. FEA requires generation of quality volumetric tetrahedral mesh geometry. This study proposes the generation of a suitable mesh based on MRI data. The resulting volumetric mesh models the autonomous nerve structures at risk during total mesorectal excision. The model also contains the bone, cartilage, fat, skin, muscle tissues of the pelvic region, and a set of electrodes for surface stimulation. The model is ready for finite element analysis of the discrete Maxwell’s equations.


Author(s):  
Alden Yellowhorse ◽  
Larry L. Howell

Ensuring that deployable mechanisms are sufficiently rigid is a major challenge due to their large size relative to their mass. This paper examines three basic types of stiffener that can be applied to light, origami-inspired structures to manage their stiffness. These stiffeners are modeled analytically to enable prediction and optimization of their behavior. The results obtained from this analysis are compared to results from a finite-element analysis and experimental data. After verifying these models, the advantages and disadvantages of each stiffener type are considered. This comparison will facilitate stiffener selection for future engineering applications.


Sign in / Sign up

Export Citation Format

Share Document