Limits of Stable Combustion in an Engine of Ultra ‐ Small Spacecrafts

2016 ◽  
Vol 5 (1) ◽  
pp. 49-64 ◽  
Author(s):  
Kanysh Sabdenov ◽  
Johann Dueck
Keyword(s):  
1974 ◽  
Vol 10 (4) ◽  
pp. 530-533
Author(s):  
A. A. Kostritsa ◽  
V. L. Savel'ev

2017 ◽  
Vol 49 (10) ◽  
pp. 711-719 ◽  
Author(s):  
Gregory N Smith ◽  
James E Hallett ◽  
Paul Joseph ◽  
Svetlana Tretsiakova-McNally ◽  
Tan Zhang ◽  
...  

2019 ◽  
pp. 146808741986754
Author(s):  
Hanho Yun ◽  
Cherian Idicheria ◽  
Paul Najt

Engines operating in low temperature combustion during positive valve overlap operation offer significant benefits of high fuel economy over the low temperature combustion during negative valve overlap operation. Significant efficiency improvement was achieved by the increased gamma and lower pumping loss. However, NOx emissions were increased due to reliance on the flame-induced combustion. In this study, the corona ignition system was evaluated to reduce NOx emissions during positive valve overlap operation while maintaining the benefit of efficiency gain. The tests were performed in a 2.2-L multi-cylinder engine. The results show that the ignition delay is always shorter with the corona ignition system than with the spark plug. The corona ignition system is able to support stable combustion (coefficient of variation of indicated mean effective pressure <3%) in a lower load during positive valve overlap operation than the spark plug, which gives us additional efficiency benefit. Since the corona ignition system promotes simultaneous ignition of the mixture at multiple locations in the combustion chamber as opposed to ignition being limited to the spark gap channel, the dependence of the flame burn for stable combustion during positive valve overlap operation minimizes, which leads to lower NOx emissions over the spark plug.


2019 ◽  
Vol 20 (10) ◽  
pp. 1025-1036 ◽  
Author(s):  
Eugen Nuss ◽  
Maximilian Wick ◽  
Jakob Andert ◽  
Jochem De Schutter ◽  
Moritz Diehl ◽  
...  

Gasoline-controlled auto ignition is a promising technology capable of reducing both fuel consumption and emissions at the same time. There are, however, challenges to overcome in order to make practical use of it. One area of research addresses methods that guarantee stable combustion as gasoline-controlled auto ignition is very sensitive to disturbances. This article investigates the capability of nonlinear model predictive control to ensure stable combustion while maintaining efficient operation. For this purpose, a suitable gasoline-controlled auto ignition model is selected and identified using measurement data of a single-cylinder test bed. Building upon this model, a controller based on nonlinear model predictive control is derived and analyzed by means of simulation. The investigation shows that the control manages to follow prescribed set points, also for late combustion, and indicates promising results with respect to real-time computation constraints.


Author(s):  
Yeshayahou Levy ◽  
Vladimir Erenburg ◽  
Valery Sherbaum ◽  
Vitali Ovcharenko ◽  
Leonid Rosentsvit ◽  
...  

Lean premixed combustion is one of the widely used methods for NOx reduction in gas turbines (GT). When this method is used combustion takes place under low Equivalence Ratio (ER) and at relatively low combustion temperature. While reducing temperature decreases NOx formation, lowering temperature reduces the reaction rate of the hydrocarbon–oxygen reactions and deteriorates combustion stability. The objective of the present work was to study the possibility to decrease the lower limit of the stable combustion regime by the injection of free radicals into the combustion zone. A lean premixed gaseous combustor was designed to include a circumferential concentric pilot flame. The pilot combustor operates under rich fuel to air ratio, therefore it generates a significant amount of reactive radicals. The experiments as well as CFD and CHEMKIN simulations showed that despite of the high temperatures obtained in the vicinity of the pilot ring, the radicals’ injection from the pilot combustor has the potential to lower the limit of the global ER (and temperatures) while maintaining stable combustion. Spectrometric measurements along the combustor showed that the fuel-rich pilot flame generates free radicals that augment combustion stability. In order to study the relevant mechanisms responsible for combustion stabilization, CHEMKIN simulations were performed. The developed chemical network model took into account some of the basic parameters of the combustion process: ER, residence time, and the distribution of the reactances along the combustor. The CHEMKIN simulations showed satisfactory agreement with experimental results.


Author(s):  
Mirko R. Bothien ◽  
Andrea Ciani ◽  
John P. Wood ◽  
Gerhard Fruechtel

Abstract Excess energy generation from renewables can be conveniently stored as hydrogen for later use as a gas turbine fuel. Also, the strategy to sequestrate CO2 from natural gas (NG) will require gas turbines to run with hydrogen-based fuels. In such scenarios, high temperature low emission combustion of hydrogen is a key requirement for the future gas turbine market. Ansaldo Energia's gas turbines featuring sequential combustion have an intrinsic advantage when it comes to fuel flexibility and in particular hydrogen-based fuels. The sequential combustion system is composed of two complementary combustion stages in series: one premix stage followed by an auto-ignited second stage overcoming the limits of traditional premix combustion systems through a highly effective extra tuning parameter, i.e., the temperature between the first and the second stage. The standard constant pressure sequential combustion (CPSC) system as applied in the GT36 engine is tested, at high pressure, demonstrating that a modified operation concept allows stable combustion with no changes in combustor hardware for the whole range of NG and hydrogen blends. It is shown that in the range from 0% to 70% (vol.) hydrogen, stable combustion is achieved at full nominal exit temperature, i.e., without any derating and thus clearly outperforming other available conventional premixed combustors. Operation between 70% and 100% is possible as well and only requires a mild reduction of the combustor exit temperature. By proving the transferability of the single-can high pressure results to the engine, this paper demonstrates the practicality of operating the Ansaldo Energia GT36 H-Class gas turbine on fuels containing unprecedented concentrations of hydrogen while maintaining excellent performance and low emissions both in terms of NOx and CO2.


Author(s):  
Masafumi Sasaki ◽  
Hirotaka Kumakura ◽  
Daishi Suzuki ◽  
Hiroyuki Ichikawa ◽  
Youichiro Ohkubo ◽  
...  

A low emission combustor, which uses a prevaporization-premixing lean combustion system for the 100 kW automotive ceramic gas turbine (CGT), has been subjected to performance tests. Now a second combustor prototype (PPL-2), which incorporates improvements intended to overcome a flashback problem observed in an initial combustor prototype (PPL-1), is tested. The PPL-2 has been designed and built, so that it will substantially expand the stable combustion range. The improvement is accomplished by increasing the air distribution ratio in the lean combustion region to avoid flashback, providing a uniform flow velocity through the throat area and also by diluting the boundary layer so as to suppress flashback. Test results of the PPL-2 combustor show that it expands the flashback limit without affecting the blow out limit and is able to cover the stable combustion range need for the 100kW CGT.


Sign in / Sign up

Export Citation Format

Share Document