Lowering Equivalence Ratio Limit for Stable Combustion in Gas Turbines by Injection of Free Radicals

Author(s):  
Yeshayahou Levy ◽  
Vladimir Erenburg ◽  
Valery Sherbaum ◽  
Vitali Ovcharenko ◽  
Leonid Rosentsvit ◽  
...  

Lean premixed combustion is one of the widely used methods for NOx reduction in gas turbines (GT). When this method is used combustion takes place under low Equivalence Ratio (ER) and at relatively low combustion temperature. While reducing temperature decreases NOx formation, lowering temperature reduces the reaction rate of the hydrocarbon–oxygen reactions and deteriorates combustion stability. The objective of the present work was to study the possibility to decrease the lower limit of the stable combustion regime by the injection of free radicals into the combustion zone. A lean premixed gaseous combustor was designed to include a circumferential concentric pilot flame. The pilot combustor operates under rich fuel to air ratio, therefore it generates a significant amount of reactive radicals. The experiments as well as CFD and CHEMKIN simulations showed that despite of the high temperatures obtained in the vicinity of the pilot ring, the radicals’ injection from the pilot combustor has the potential to lower the limit of the global ER (and temperatures) while maintaining stable combustion. Spectrometric measurements along the combustor showed that the fuel-rich pilot flame generates free radicals that augment combustion stability. In order to study the relevant mechanisms responsible for combustion stabilization, CHEMKIN simulations were performed. The developed chemical network model took into account some of the basic parameters of the combustion process: ER, residence time, and the distribution of the reactances along the combustor. The CHEMKIN simulations showed satisfactory agreement with experimental results.

Author(s):  
Yeshayahou Levy ◽  
Alon Gany ◽  
Yakov Goldman ◽  
Vladimir Erenburg ◽  
Valery Sherbaum ◽  
...  

The need for NOx reduction in gas turbine (GT) stimulates research for new combustion methods. Lean combustion is a method in which combustion takes place under low equivalence ratio and relatively low combustion temperatures. As such, it has the potential to lower the effect of the relatively high activation energy nitrogen-oxygen reactions which are responsible for substantial NOx formation during combustion processes. Moreover, lowering temperature reduces the reaction rate of the hydrocarbon-oxygen reactions and deteriorates combustion stability. The objective of the present study is to reduce the lower equivalence ratio limit of the stable combustion operational boundary in lean GT combustors. A lean premixed gaseous combustor was equipped with a surrounding concentric pilot flame operating under rich conditions, thus generating a significant amount of reactive radicals. The main combustor’s mixture composition was varied from stoichiometric to lean mixtures. The pilot’s mixture composition varied by changing the air flow rate, within a limited reach mixtures range. The pilot gas flow rate was always lower than five percent of the total gas supply at the specific stage of the experiments. The experiments and simulation showed that despite the high temperatures obtained in the vicinity of the pilot ring, the radicals’ injection by the pilot combustion has the potential to lower the limit of the global equivalence ratio (and temperatures) while maintaining stable combustion. Therefore the amount of generated NOx is expected to be significantly reduced as compared to a similar combustor of identical inlet and exit temperatures. In order to study the relevant mechanisms responsible for combustion stabilization, CFD and CHEMKIN simulations were performed to reveal the detailed flow characteristics and their spatial distribution within the combustor. Based on the CFD results, the CHEMKIN model was developed. The CHEMKIN simulations for atmospheric pressure showed satisfactory agreement with experimental results. Further simulation confirmed the advantageous of the technique also at elevated pressures. It is therefore important to understand the relevant mechanisms responsible for combustion stabilization and their spatial distribution within the combustor. The present work discusses an experimental- CFD-CHEMKIN combined approach aimed at studying the influence of radicals generated in the pilot ring combustion on the processes taking place in the main combustor.


Author(s):  
Lars O. Nord ◽  
David R. Schoemaker ◽  
Helmer G. Andersen

A study was initiated to investigate the possibility of significantly reducing the NOx emissions at a power plant utilizing, among other manufacturers, ALSTOM GT11 type gas turbines. This study is limited to one of the GT11 type gas turbines on the site. After the initial study phase, the project moved on to a mechanical implementation stage, followed by thorough testing and tuning. The NOx emissions were to be reduced at all ambient conditions, but particularly at cold conditions (below 0°C) where a NOx reduction of more than 70% was the goal. The geographical location of the power plant means cold ambient conditions for a large part of the year. The mechanical modifications included the addition of Helmholtz damper capacity with an approximately 30% increase in volume for passive thermo-acoustic instability control, significant piping changes to the fuel distribution system in order to change the burner configuration, and installation of manual valves for throttling of the fuel gas to individual burners. Subsequent to the mechanical modifications, significant time was spent on testing and tuning of the unit to achieve the wanted NOx emissions throughout a major part of the load range. The tuning was, in addition to the main focus of the NOx reduction, also focused on exhaust temperature spread, combustion stability, CO emissions, as well as other parameters. The measurement data was acquired through a combination of existing unit instrumentation and specific instrumentation added to aid in the tuning effort. The existing instrumentation readings were polled from the control system. The majority of the added instrumentation was acquired via the FieldPoint system from National Instruments. The ALSTOM AMODIS plant-monitoring system was used for acquisition and analysis of all the data from the various sources. The project was, in the end, a success with low NOx emissions at part load and full load. As a final stage of the project, the CO emissions were also optimized resulting in a nice compromise between the important parameters monitored, namely NOx emissions, CO emissions, combustion stability, and exhaust temperature distribution.


Author(s):  
H. H.-W. Funke ◽  
N. Beckmann ◽  
J. Keinz ◽  
S. Abanteriba

The Dry-Low-NOx (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing. Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, CFD analyses are validated towards experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOx emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. For pure hydrogen combustion a one-step global reaction is applied using a hybrid Eddy-Break-up model that incorporates finite rate kinetics. The model is evaluated and compared to a detailed hydrogen combustion mechanism derived by Li et al. including 9 species and 19 reversible elementary reactions. Based on this mechanism, reduction of the computational effort is achieved by applying the Flamelet Generated Manifolds (FGM) method while the accuracy of the detailed reaction scheme is maintained. For hydrogen-rich syngas combustion (H2-CO) numerical analyses based on a skeletal H2/CO reaction mechanism derived by Hawkes et al. and a detailed reaction mechanism provided by Ranzi et al. are performed. The comparison between combustion models and the validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The Flamelet Generated Manifolds method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry. Especially for reaction mechanisms with a high number of species accuracy and computational effort can be balanced using the FGM model.


Author(s):  
P. Griebel ◽  
R. Bombach ◽  
A. Inauen ◽  
R. Scha¨ren ◽  
S. Schenker ◽  
...  

The present experimental study focuses on flame characteristics and turbulent flame speeds of lean premixed flames typical for stationary gas turbines. Measurements were performed in a generic combustor at a preheating temperature of 673 K, pressures up to 14.4 bars (absolute), a bulk velocity of 40 m/s, and an equivalence ratio in the range of 0.43–0.56. Turbulence intensities and integral length scales were measured in an isothermal flow field with Particle Image Velocimetry (PIV). The turbulence intensity (u′) and the integral length scale (LT) at the combustor inlet were varied using turbulence grids with different blockage ratios and different hole diameters. The position, shape, and fluctuation of the flame front were characterized by a statistical analysis of Planar Laser Induced Fluorescence images of the OH radical (OH-PLIF). Turbulent flame speeds were calculated and their dependence on operating conditions (p, φ) and turbulence quantities (u′, LT) are discussed and compared to correlations from literature. No influence of pressure on the most probable flame front position or on the turbulent flame speed was observed. As expected, the equivalence ratio had a strong influence on the most probable flame front position, the spatial flame front fluctuation, and the turbulent flame speed. Decreasing the equivalence ratio results in a shift of the flame front position farther downstream due to the lower fuel concentration and the lower adiabatic flame temperature and subsequently lower turbulent flame speed. Flames operated at leaner equivalence ratios show a broader spatial fluctuation as the lean blow-out limit is approached and therefore are more susceptible to flow disturbances. In addition, because of a lower turbulent flame speed these flames stabilize farther downstream in a region with higher velocity fluctuations. This increases the fluctuation of the flame front. Flames with higher turbulence quantities (u′, LT) in the vicinity of the combustor inlet exhibited a shorter length and a higher calculated flame speed. An enhanced turbulent heat and mass transport from the recirculation zone to the flame root location due to an intensified mixing which might increase the preheating temperature or the radical concentration is believed to be the reason for that.


Author(s):  
Amin Akbari ◽  
Vincent McDonell ◽  
Scott Samuelsen

Co firing of natural gas with renewable fuels such as hydrogen can reduce greenhouse gas emissions, and meet other sustainability considerations. At the same time, adding hydrogen to natural gas alters combustion properties, such as burning speeds, heating values, flammability limits, and chemical characteristics. It is important to identify how combustion stability relates to fuel mixture composition in industrial gas turbines and burners and correlate such behavior to fuel properties or operating conditions. Ultimately, it is desired to predict and prevent operability issues when designing a fuel flexible gas turbine combustor. Fuel interchangeability is used to describe the ability of a substitute fuel composition to replace a baseline fuel without significantly altering performance and operation. Any substitute fuel, while maintaining the same heating load as the baseline fuel, must also provide stable combustion with low pollutant emissions. Interchangeability indices try to predict the impact of fuel composition on lean blowoff and flashback. Correlations for operability limits have been reported, though results are more consistent for blowoff compared to flashback. Yet, even for blowoff, some disagreement regarding fuel composition effects are evident. In the present work, promising correlations and parameters for lean blow off and flashback in a swirl stabilized lean premixed combustor are evaluated. Measurements are conducted for fuel compositions ranging from pure natural gas to pure hydrogen under different levels of preheat and air flow rates. The results are used to evaluate the ability of existing approaches to predict blowoff and flashback. The results show that, while a Damköhler number approach for blowoff is promising, important considerations are required in applying the method. For flashback, the quench constant parameter suggested for combustion induced vortex breakdown was applied and found to have limited success for predicting flashback in the present configuration.


Author(s):  
K. K. Botros ◽  
M. J. de Boer ◽  
G. Kibrya

A one dimensional model based on fundamental principles of gas turbine thermodynamics and combustion processes was constructed to quantify the principle of exhaust gas recirculation (EGR) for NOx reduction. The model utilizes the commercial process simulation software ASPEN PLUS®. Employing a set of 8 reactions including the Zeldovich mechanism, the model predicted thermal NOx formation as function of amount of recirculation and the degree of recirculate cooling. Results show that addition of sufficient quantities of uncooled recirculate to the inlet air (i.e. EGR>∼4%) could significantly decrease NOx emissions but at a cost of lower thermal efficiency and specific work. Cooling the recirculate also reduced NOx at lower quantities of recirculation. This has also the benefit of decreasing losses in the thermal efficiency and in the specific work output. Comparison of a ‘rubber’ and ‘non-rubber’ gas turbine confirmed that residence time is one important factor in NOx formation.


Author(s):  
Thoralf G. Reichel ◽  
Katharina Goeckeler ◽  
Oliver Paschereit

In the context of lean premixed combustion, the prevention of upstream flame propagation in the premixing zone, referred to as flashback, is a crucial challenge related to the application of hydrogen as a fuel for gas turbines. The location of flame anchoring and its impact on flashback tendencies in a technically premixed, swirl-stabilized hydrogen burner are investigated experimentally at atmospheric pressure conditions using planar laser-induced fluorescence of hydroxyl radicals (OH-PLIF). The inlet conditions are systematically varied with respect to equivalence ratio (ϕ = 0.2–1.0), bulk air velocity u0 = 30–90m/s and burner preheat temperature ranging from 300K to 700K. The burner is mounted in the atmospheric combustion test rig at the HFI, firing at a power of up to 220 kW into a 105 mm diameter quartz cylinder, which provides optical access to the flame region. The experiments were performed using an in-house burner design that previously proved to be highly resistant against flashback occurrence by applying the axial air injection strategy. Axial air injection constitutes a non-swirling air jet on the central axis of the radial swirl generator, thus, influencing the vortex breakdown position. High axial air injection yields excellent flashback resistance and is used to investigate the whole inlet parameter space. In order to trigger flashback, the amount of axially injected air is reduced, which allowed to investigate the near flashback flame behavior. Results show that both, fuel momentum of hydrogen and axial air injection alter the isothermal flow field and cause a downstream shift of the axial flame front location. Such a shift is proven beneficial for flashback resistance. This effect was quantified by applying an edge detection algorithm to the OH-PLIF images, in order to extract the location of maximum flame front likelihood xF. The temperature and equivalence ratio dependence of the parameters xF is identified to be governed by the momentum ratio between fuel and air flow J. These results contribute to the understanding of the superior flashback limits of configurations applying high amounts of axial air injection over medium or none air injection.


Author(s):  
Ashish Vashishtha ◽  
Sajjad Yousefian ◽  
Graham Goldin ◽  
Karin Frojd ◽  
Sandeep Jella ◽  
...  

Abstract The main motivation of this study is to investigate detailed NOx and CO formation in high-pressure dump combustor fired with lean premixed methane-air mixture using CFD-CRN hybrid approach. Further, this study is extended to investigate the effect of H2 enrichment on emission formation in the same combustor. Three-dimensional steady RANS CFD simulations have been performed using a Flamelet Generated Manifold (FGM) model in Simcenter STAR-CCM+ 2019.2 with the DRM22 reduced mechanism. The CFD simulations have been modelled along with all three heat transfers modes: conduction, convection and radiation. The conjugate heat transfer (CHT) approach and participating media radiation modelling have been used here. Initially, CFD simulations are performed for five lean equivalence ratios (ϕ = 0.43–0.55, Tinlet = 673 K, Vinlet = 40 m/s) of pure methane-air mixture operating at 5 bar. The exit temperature and flame-length are compared with available experimental data. The automatic chemical reactor network has been constructed from CFD data and solved using the recently developed reactor network module of Simcenter STAR-CCM+ 2019.2 in a single framework for each cases. It is found out that the CRNs up to 10,000 PSRs can provide adequate accuracy in exit NOx predictions compared to experiments for pure methane cases. The contribution of NOx formation pathway, changes from N2O intermediate to thermal NO as equivalence ratio increases. Further studies are performed for two equivalence ratios (ϕ = 0.43 and 0.50 to simulate the impact of H2 addition (up to 40% by volume) on NOx formation pathways and CO emission. It is found out here that the contribution from NNH pathway increases for leaner equivalence ratio cases (ϕ = 0.43), while thermal pathway slightly increases for ϕ = 0.50 with increase in H2 content from 0% to 40%.


Author(s):  
Vera Hoferichter ◽  
Denise Ahrens ◽  
Michael Kolb ◽  
Thomas Sattelmayer

Staged combustion is a promising technology for gas turbines to achieve load flexibility and low NOx emission levels at the same time. Therefore, a large scale atmospheric test rig has been set up at the Institute of Thermodynamics, Technical University of Munich to study NOx emission characteristics of a reacting jet in hot cross flow. The premixed primary combustion stage is operated at ϕ = 0.5 and provides the hot cross flow. In the second stage a premixed jet at ϕ = 0.77 is injected perpendicular to the first stage. In both stages natural gas is used as fuel and air as oxidant. This paper presents a reactor model approach for the computation of the resulting NOx concentrations. The mixing and ignition process along the jet streamline of maximum NOx formation is simulated using a perfectly stirred reactor with Cantera 1.8. The reactor model is validated for the ambient pressure case using experimental data. Afterwards, a high pressure simulation is performed in order to investigate the NOx emission characteristics under gas turbine conditions. The NOx formation is divided into flame NOx and post flame NOx. The reactor model reveals that the formation of post flame NOx in the second combustion stage can be efficiently suppressed due to fast mixing with cross flow material and the corresponding temperature reduction. Compared to single stage combustion with the same power output, no NOx reduction was observed in the experiment. However, the results from the reactor model suggest a NOx reduction potential at gas turbine conditions caused by the increased influence of post flame NOx production at high pressure.


Sign in / Sign up

Export Citation Format

Share Document