scholarly journals Geoscience of Climate and Energy 11. Ambient Air Quality and Linkage to Ecosystems in the Athabasca Oil Sands, Alberta

2013 ◽  
Vol 40 (3) ◽  
pp. 182 ◽  
Author(s):  
Kevin E. Percy

In 2010, there were 91 active oil sands projects in the Athabasca Oil Sands, Alberta where the Wood Buffalo Environmental Association monitors air quality and related environmental impacts. In 2012, ambient air concentrations of sulphur dioxide, nitrogen dioxide, and ammonia did not exceed the Alberta Ambient Air Quality Objectives. There was one exceedance of   these objectives for ground-level ozone, and 62 exceedances for fine particulate matter with aerodynamic diameter ≤ 2.5 microns. There were 170 exceedances of the 1-hour hydrogen sulphide / total reduced sulphur odour threshold. The number of hourly exceedances has decreased since 2009, yet odours remain a serious concern in some communities. Based on the Air Quality Health Index (ozone, nitrogen dioxide, fine particulate matter), the risk from ambient air quality to human health from some pollutants was calculated to be low 96% to 98% of the time depending upon monitoring location, moderate 1% to 3.4%, high ≤ 0.4%, and very high ≤ 0.2% of the year. In a highly regulated setting like the Alberta oil sands, it is critical for stakeholders to quantify the spatial influences of emission source types to explain  any consequential environmental effects. Source apportionment studies successfully matched source chemical fingerprints with those measured in terrestrial lichens throughout the region. Forensic receptor modeling showed source types contributing to elemental concentrations in the lichens included combustion processes (~23%), tailing sand (~19%), haul roads and limestone (~15%), oil sand and processed materials (~15%), and a general anthropogenic urban source (~15%). Re-suspended fugitive dust from operations, tailings dikes, quarrying, on-road transportation, and land clearing was found to contribute enrichment to a much greater degree than the hitherto assumed combustion source type.SOMMAIREEn 2010, il y avait 91 projets d’extraction en cours dans les sables bitumineux de l’Athabasca en Alberta, soit dans le secteur où la Wood Buffalo Environmental Association mesure la qualité de l'air et les répercussions sur les milieux de vie.  En 2012, les concentrations dans l'air ambiant de dioxyde de soufre, le dioxyde d'azote et d'ammoniac n’ont pas dépassé les niveaux fixés par l’Alberta Ambient Air Quality Objectives.  Il y a eu 1 dépassement de ces objectifs pour la concentration de l'ozone au niveau du sol, et 62 dépassements pour la concentration des particules fines d'un diamètre aérodynamique ≤ 2,5 micromètres.  Il y a eu 170 dépassements pour la concentration du sulfure d’hydrogène pendant 1 heure / du seuil de l’odeur total de soufre réduit.  Le nombre des dépassements horaires a diminué depuis 2009, mais les odeurs demeurent un grave problème dans certaines communautés.  En fonction de la Cote air santé (ozone, dioxyde d'azote, particules fines), le risque de la qualité de l'air ambiant pour la santé humaine de certains polluants a été qualifiée de faible pour 96 % à 98 % des cas selon lieu de la mesure, de modérée dans 1 % à 3,4 %, plus élevé dans ≤ 0,4% des cas, et de très élevé dans ≤ 0,2% de l’année.  Dans un cadre très réglementé comme celui des sables bitumineux de l'Alberta, il est essentiel pour les parties prenantes de quantifier spatialement les répercussions des divers types de sources d'émissions dans le but d’expliquer les conséquences sur les milieux de vie.  Les études d’attribution des sources ont très bien recoupé celles des empreintes chimiques des sources mesurées dans les lichens terrestres dans toute la région.  La modélisation par récepteurs forensiques a montré que les types de sources qui contribuent aux concentrations élémentaires dans les lichens proviennent des procédés de combustion (~ 23%), des sables résiduels (~ 19%), des routes de transport et du calcaire (~ 15%), des sables bitumineux et des matériaux transformés (~ 15%) et d’une source urbaine anthropique générale (~ 15%).  On a établi que les poussières diffuses remises en suspension provenant de l'exploitation, les digues de résidus, les carrières, le transport routier et le défrichement contribuent à l’augmentation de la concentration à un degré beaucoup plus élevé que la combustion, qu’on ne l’avait estimé jusqu’à présent.DOI: http://dx.doi.org/10.12789/geocanj.2013.40.014

2021 ◽  
Author(s):  
Drew C. Pendergrass ◽  
Daniel J. Jacob ◽  
Shixian Zhai ◽  
Jhoon Kim ◽  
Ja-Ho Koo ◽  
...  

Abstract. We use 2011–2019 aerosol optical depth (AOD) observations from the Geostationary Ocean Color Imager (GOCI) instrument over East Asia to infer 24-h daily surface fine particulate matter (PM2.5) concentrations at continuous 6x6 km2 resolution over eastern China, South Korea, and Japan. This is done with a random forest (RF) algorithm applied to the gap-filled GOCI AODs and other data and trained with PM2.5 observations from the three national networks. The predicted 24-h PM2.5 concentrations for sites entirely withheld from training in a ten-fold crossvalidation procedure correlate highly with network observations (R2 = 0.89) with single-value precision of 26–32 % depending on country. Prediction of annual mean values has R2 = 0.96 and single-value precision of 12 %. The RF algorithm is only moderately successful for diagnosing local exceedances of the National Ambient Air Quality Standard (NAAQS) because these exceedances are typically within the single-value precisions of the RF, and also because of RF smoothing of extreme PM2.5 concentrations. The area-weighted and population-weighted trends of RF PM2.5 concentrations for eastern China, South Korea, and Japan show steady 2015–2019 declines consistent with surface networks, but the surface networks in eastern China and South Korea underestimate population exposure. Further examination of RF PM2.5 fields for South Korea identifies hotspots where surface network sites were initially lacking and shows 2015–2019 PM2.5 decreases across the country except for flat concentrations in the Seoul metropolitan area. Inspection of monthly PM2.5 time series in Beijing, Seoul, and Tokyo shows that the RF algorithm successfully captures observed seasonal variations of PM2.5 even though AOD and PM2.5 often have opposite seasonalities. Application of the RF algorithm to urban pollution episodes in Seoul and Beijing demonstrates high skill in reproducing the observed day-to-day variations in air quality as well as spatial patterns on the 6 km scale. Comparison to a CMAQ simulation for the Korean peninsula demonstrates the value of the continuous RF PM2.5 fields for testing air quality models, including over North Korea where they offer a unique resource.


Author(s):  
Erin C. Horb ◽  
Gregory R. Wentworth ◽  
Paul A. Makar ◽  
John Liggio ◽  
Katherine Hayden ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 518
Author(s):  
Shah Zaib ◽  
Jianjiang Lu ◽  
Muhammad Zeeshaan Shahid ◽  
Sunny Ahmar ◽  
Imran Shahid

SARS-CoV-2 was discovered in Wuhan (Hubei) in late 2019 and covered the globe by March 2020. To prevent the spread of the SARS-CoV-2 outbreak, China imposed a countrywide lockdown that significantly improved the air quality. To investigate the collective effect of SARS-CoV-2 on air quality, we analyzed the ambient air quality in five provinces of northwest China (NWC): Shaanxi (SN), Xinjiang (XJ), Gansu (GS), Ningxia (NX) and Qinghai (QH), from January 2019 to December 2020. For this purpose, fine particulate matter (PM2.5), coarse particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) were obtained from the China National Environmental Monitoring Center (CNEMC). In 2020, PM2.5, PM10, SO2, NO2, CO, and O3 improved by 2.72%, 5.31%, 7.93%, 8.40%, 8.47%, and 2.15%, respectively, as compared with 2019. The PM2.5 failed to comply in SN and XJ; PM10 failed to comply in SN, XJ, and NX with CAAQS Grade II standards (35 µg/m3, 70 µg/m3, annual mean). In a seasonal variation, all the pollutants experienced significant spatial and temporal distribution, e.g., highest in winter and lowest in summer, except O3. Moreover, the average air quality index (AQI) improved by 4.70%, with the highest improvement in SN followed by QH, GS, XJ, and NX. AQI improved in all seasons; significant improvement occurred in winter (December to February) and spring (March to May) when lockdowns, industrial closure etc. were at their peak. The proportion of air quality Class I improved by 32.14%, and the number of days with PM2.5, SO2, and NO2 as primary pollutants decreased while they increased for PM10, CO, and O3 in 2020. This study indicates a significant association between air quality improvement and the prevalence of SARS-CoV-2 in 2020.


2013 ◽  
Vol 361-363 ◽  
pp. 850-853 ◽  
Author(s):  
Ming Qing You

This article compares the new ambient quality standards adopted by China on 29 February 2012 with the previous ambient air quality standards and reveals the significance of and reasons for this revision. It points out that the new ambient air quality standards added fine particulate matters into the items to be monitored, reclassified monitored items into the group of basic items to be mandatorily monitored nationwide and the group of other pollutants to be monitored discretionally, and set the maximum concentration for each of the two categories of areas. This revision was in response to the demand of the general public for less pollution and better information on the air quality. This revision is important for the human health because it imposes a new task on local governments. The new standard shall be implemented gradually, beginning with most seriously polluted areas, and finally to be implemented nation-wide. This revision is expected to contribute to better protection of human health.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Mercedes A. Bravo ◽  
Marie Lynn Miranda

Abstract Background Previous studies observed associations between prenatal exposure to fine particulate matter (≤ 2.5 μm; PM2.5) and small-for-gestational-age (SGA) birth and lower birthweight percentile for gestational age. Few, if any, studies examine prenatal air pollution exposure and these pregnancy outcomes in neonates born to the same women. Here, we assess whether prenatal exposure to ambient fine particulate matter (PM2.5) is associated with small-for-gestational-age (SGA) birth or birthweight percentile for gestational age in a longitudinal setting. Methods Detailed birth record data were used to identify women who had singleton live births at least twice in North Carolina during 2002–2006 (n = 53,414 women, n = 109,929 births). Prenatal PM2.5 exposures were calculated using daily concentration estimates obtained from the US EPA Fused Air Quality Surface using Downscaling data archive. Associations between PM2.5 exposure and birthweight percentile and odds of SGA birth were calculated using linear and generalized mixed models, comparing successive pregnancies to the same woman. Odds ratios and associations were also estimated in models that did not account for siblings born to the same mother. Results Among NHW women, pregnancy-long PM2.5 exposure was associated with SGA (OR: 1.11 [1.06, 1.18]) and lower birthweight percentile (− 0.46 [− 0.74, − 0.17]). Trimester-specific PM2.5 was also associated with SGA and lower birthweight percentile. Among NHB women, statistically significant within-woman associations between PM2.5, SGA, and birthweight percentile were not observed. However, in models that did not account for births to the same mother, statistically significant associations were observed between some PM2.5 exposure windows and higher odds of SGA and lower birthweight percentile among NHB women. Conclusions Findings suggest that a woman is at greater risk of delivering an SGA or low birthweight percentile neonate when she has been exposed to higher PM2.5 levels. The within-woman comparison implemented here better controls for factors that may differ between women and potentially confound the relationship between PM2.5 exposure and pregnancy outcomes. This adds to the evidence that PM2.5 exposure may be causally related to SGA and birthweight percentile, even at concentrations close to or below National Ambient Air Quality Standards.


Sign in / Sign up

Export Citation Format

Share Document