A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games

Author(s):  
Claudio Contardo ◽  
Jorge A. Sefair

We present a progressive approximation algorithm for the exact solution of several classes of interdiction games in which two noncooperative players (namely an attacker and a follower) interact sequentially. The follower must solve an optimization problem that has been previously perturbed by means of a series of attacking actions led by the attacker. These attacking actions aim at augmenting the cost of the decision variables of the follower’s optimization problem. The objective, from the attacker’s viewpoint, is that of choosing an attacking strategy that reduces as much as possible the quality of the optimal solution attainable by the follower. The progressive approximation mechanism consists of the iterative solution of an interdiction problem in which the attacker actions are restricted to a subset of the whole solution space and a pricing subproblem invoked with the objective of proving the optimality of the attacking strategy. This scheme is especially useful when the optimal solutions to the follower’s subproblem intersect with the decision space of the attacker only in a small number of decision variables. In such cases, the progressive approximation method can solve interdiction games otherwise intractable for classical methods. We illustrate the efficiency of our approach on the shortest path, 0-1 knapsack and facility location interdiction games. Summary of Contribution: In this article, we present a progressive approximation algorithm for the exact solution of several classes of interdiction games in which two noncooperative players (namely an attacker and a follower) interact sequentially. We exploit the discrete nature of this interdiction game to design an effective algorithmic framework that improves the performance of general-purpose solvers. Our algorithm combines elements from mathematical programming and computer science, including a metaheuristic algorithm, a binary search procedure, a cutting-planes algorithm, and supervalid inequalities. Although we illustrate our results on three specific problems (shortest path, 0-1 knapsack, and facility location), our algorithmic framework can be extended to a broader class of interdiction problems.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ľuboš Buzna ◽  
Michal Koháni ◽  
Jaroslav Janáček

We present a new approximation algorithm to the discrete facility location problem providing solutions that are close to the lexicographic minimax optimum. The lexicographic minimax optimum is a concept that allows to find equitable location of facilities serving a large number of customers. The algorithm is independent of general purpose solvers and instead uses algorithms originally designed to solve thep-median problem. By numerical experiments, we demonstrate that our algorithm allows increasing the size of solvable problems and provides high-quality solutions. The algorithm found an optimal solution for all tested instances where we could compare the results with the exact algorithm.


Author(s):  
Changchun Wu ◽  
Guotai Shao

As a main channel for long distance transportation of Daqing crude oil, Daqing-Tieling oil pipeline system consists of two pipelines in parallel. With its capacity of 45 million tons per year, the system is the largest oil pipeline system in China and plays an important role in the petroleum industry and national economy of China. Due to the complicated interconnection between the two pipelines in the system, the optimization of steady operation of the system is much more difficult than a single pipeline so that it can be considered as an optimization problem on large scale system. Besides the interconnection of the two pipelines, because of high pour point of Daqing crude oil, another difficulty to solve the problem comes from the fact that the two pipelines are hot oil pipeline, of which the heating-pumping stations are equipped with some heaters to heat the crude oil so as to improve its flow ability. For the optimization problem, the basic decision variables can be divided into two types, the discharge temperature of each heating-pumping station and the 0–1 variable which assigns a pump online or offline, and they are dependent to each other. Under certain conditions, the problem can be decomposed into two relatively independent sub-problems, one being the optimization of the oil temperatures in the system, another being the optimization of the matching between a pump combination and the all pipe segments of the system. The first sub-problem has been modeled as a nonlinear programming problem with 55 decision variables and more than one hundred constraints. For simplifying the solving process of the sub-problem, it has been further decomposed into a set of sub-problems, again, each of which can be easily solved. The second sub-problem can be modeled as a dynamic programming problem. On the basis of the models and the algorithms proposed for the above-mentioned problem, a software QTOPT has been developed specially for the Daqing-Tieling oil pipeline system, and has been used in evaluating and optimizing the process design of the system. Also the software can be used to optimize the steady operation of the system.


Author(s):  
P. VASANT ◽  
T. GANESAN ◽  
I. ELAMVAZUTHI

The minimization of the profit function with respect to the decision variables is very important for the decision makers in the oil field industry. In this paper, a novel approach of the improved tabu search algorithm has been employed to solve a large scale problem in the crude oil refinery industry. This problem involves 44 variables, 36 constraints, and four decision variables which represent four types of crude oil types. The decision variables have been modeled in the form of fuzzy linear programming problem. The vagueness factor in the decision variables is captured by the nonlinear modified S-curve membership function. A recursive improved tabu search has been used to solve this fuzzy optimization problem. Tremendously improved results are obtained for the optimal profit function and optimal solution for four crude oil. The accuracy of constraints satisfaction and the quality of the solutions are achieved successfully.


Author(s):  
Hui Hu ◽  
Jianliang Li ◽  
Xudong Zhao

Taking environmental concerns into consideration, a logistics distribution center location-route multi-objective optimization model and its solving algorithm are studied in multi-modal transport network context. The objective functions in the model include total operation cost, delivery time and carbon emission goals. The model’s decision variables are product volumes with different transport modes and the constraints concerned with investment budget, limited capacity etc. Aimed at the model structure, a two-stage heuristic solving algorithm for single objective model is put forward and its validity is proved. On the basis of solutions which are searched by the heuristic solving algorithm, an optimal solution is obtained using one of multi-objective evaluation methods. Finally, a large scale multi-modal distribution network example is provided to illustrate feasibility and effectiveness of the model and the algorithm by comparing solving efficiency and results, and it finds a railway-based multi-modal transport network has the most competitive advantage.


2011 ◽  
Vol 22 (05) ◽  
pp. 1019-1034
Author(s):  
SHIHONG XU ◽  
HONG SHEN

In this paper, we propose an approximation algorithm for the Fault-Tolerant Metric Facility Location problem which can be implemented in a distributed and asynchronous manner within O(n) rounds of communication, where n is the number of vertices in the network. Given a constant size set [Formula: see text] which represents distinct levels of fault-tolerant requirements of all cities, as well as the two-part (facility and connection) cost of the optimal solution, i.e. F* + C*, the cost of our solution is no more than [Formula: see text] for the general case, and less than F* + 2C* for the special case where all cities have a uniform connectivity requirement. Extensive numerical experiments showed that the quality of our solutions is comparable (within 4% error) to the optimal solution in practice.


2020 ◽  
Vol 50 (5) ◽  
pp. 272-286
Author(s):  
Zhiwei (Tony) Qin ◽  
Xiaocheng Tang ◽  
Yan Jiao ◽  
Fan Zhang ◽  
Zhe Xu ◽  
...  

Order dispatching is instrumental to the marketplace engine of a large-scale ride-hailing platform, such as the DiDi platform, which continuously matches passenger trip requests to drivers at a scale of tens of millions per day. Because of the dynamic and stochastic nature of supply and demand in this context, the ride-hailing order-dispatching problem is challenging to solve for an optimal solution. Added to the complexity are considerations of system response time, reliability, and multiple objectives. In this paper, we describe how our approach to this optimization problem has evolved from a combinatorial optimization approach to one that encompasses a semi-Markov decision-process model and deep reinforcement learning. We discuss the various practical considerations of our solution development and real-world impact to the business.


2012 ◽  
Vol 9 (1) ◽  
pp. 74-94 ◽  
Author(s):  
Xianzhi Wang ◽  
Zhongjie Wang ◽  
Xiaofei Xu

The web has undergone a tremendous shift from information repository to the provisioning capacity of services. As an effective means of constructing coarse-grained solutions by dynamically aggregating a set of services to satisfy complex requirements, traditional service composition suffers from dramatic decrease on the efficiency of determining the optimal solution when large scale services are available in the Internet based service market. Most current approaches look for the optimal composition solution by real-time computation, and the composition efficiency greatly depends on the adopted algorithms. To eliminate such deficiency, this paper proposes a semi-empirical composition approach which incorporates the extraction of empirical evidence from historical experiences to provide guidance to solution space reduction to real-time service selection. Service communities and historical requirements are further organized into clusters based on similarity measurement, and then the probabilistic correspondences between the two types of clusters are identified by statistical analysis. For each new request, its hosting requirement cluster would be identified and corresponding service clusters would be determined by leveraging Bayesian inference. Concrete services would be selected from the reduced solution space to constitute the final composition. Timing strategies for re-clustering and consideration to special cases in clustering ensures continual adaption of the approach to changing environment. Instead of relying solely on pure real-time computation, the approach distinguishes from traditional methods by combining the two perspectives together.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Diab Mokeddem ◽  
Abdelhafid Khellaf

Optimal design problem are widely known by their multiple performance measures that are often competing with each other. In this paper, an optimal multiproduct batch chemical plant design is presented. The design is firstly formulated as a multiobjective optimization problem, to be solved using the well suited non dominating sorting genetic algorithm (NSGA-II). The NSGA-II have capability to achieve fine tuning of variables in determining a set of non dominating solutions distributed along the Pareto front in a single run of the algorithm. The NSGA-II ability to identify a set of optimal solutions provides the decision-maker DM with a complete picture of the optimal solution space to gain better and appropriate choices. Then an outranking with PROMETHEE II helps the decision-maker to finalize the selection of a best compromise. The effectiveness of NSGA-II method with multiojective optimization problem is illustrated through two carefully referenced examples.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhaocai Wang ◽  
Xiaoguang Bao ◽  
Tunhua Wu

The Chinese postman problem is a classic resource allocation and scheduling problem, which has been widely used in practice. As a classical nondeterministic polynomial problem, finding its efficient algorithm has always been the research direction of scholars. In this paper, a new bioinspired algorithm is proposed to solve the Chinese postman problem based on molecular computation, which has the advantages of high computational efficiency, large storage capacity, and strong parallel computing ability. In the calculation, DNA chain is used to properly represent the vertex, edge, and corresponding weight, and then all possible path combinations are effectively generated through biochemical reactions. The feasible solution space is obtained by deleting the nonfeasible solution chains, and the optimal solution is solved by algorithm. Then the computational complexity and feasibility of the DNA algorithm are proved. By comparison, it is found that the computational complexity of the DNA algorithm is significantly better than that of previous algorithms. The correctness of the algorithm is verified by simulation experiments. With the maturity of biological operation technology, this algorithm has a broad application space in solving large-scale combinatorial optimization problems.


Author(s):  
Masataka Yoshimura ◽  
Kazuhiro Izui

Abstract The efficient, optimized manufacture of sophisticated products largely depends upon a globally optimized design and manufacturing solution. Ideally, the decision-making tools independently used within various enterprise divisions, such as design and manufacturing, should be integrated, and all decisions made should take into account the goal of global optimization of the entire system. This paper proposes an integrated global optimization technique especially suited to systems consisting of multiple divisions. Each division’s decision-making tools are transformed into components, the interrelationships of these components and other decision variables are classified, and an optimization problem is formulated based on these classifications. The obtained optimization problem is constructed from hierarchically structured decision variables, and the optimization problem is represented by hierarchical genes. Finally, to achieve a globally optimal solution, a hybrid optimization method is demonstrated, that uses a combination of hierarchical genetic algorithms in concert with the optimization methods attached to divisional decision-making components.


Sign in / Sign up

Export Citation Format

Share Document