scholarly journals A Comparison of Univariate Time Series Methods for Forecasting Intraday Arrivals at a Call Center

2008 ◽  
Vol 54 (2) ◽  
pp. 253-265 ◽  
Author(s):  
James W. Taylor
Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1697
Author(s):  
Quirin Stier ◽  
Tino Gehlert ◽  
Michael C. Thrun

The forecasting of univariate time series poses challenges in industrial applications if the seasonality varies. Typically, a non-varying seasonality of a time series is treated with a model based on Fourier theory or the aggregation of forecasts from multiple resolution levels. If the seasonality changes with time, various wavelet approaches for univariate forecasting are proposed with promising potential but without accessible software or a systematic evaluation of different wavelet models compared to state-of-the-art methods. In contrast, the advantage of the specific multiresolution forecasting proposed here is the convenience of a swiftly accessible implementation in R and Python combined with coefficient selection through evolutionary optimization which is evaluated in four different applications: scheduling of a call center, planning electricity demand, and predicting stocks and prices. The systematic benchmarking is based on out-of-sample forecasts resulting from multiple cross-validations with the error measure MASE and SMAPE for which the error distribution of each method and dataset is estimated and visualized with the mirrored density plot. The multiresolution forecasting performs equal to or better than twelve comparable state-of-the-art methods but does not require users to set parameters contrary to prior wavelet forecasting frameworks. This makes the method suitable for industrial applications.


2020 ◽  
Vol 5 (1) ◽  
pp. 374
Author(s):  
Pauline Jin Wee Mah ◽  
Nur Nadhirah Nanyan

The main purpose of this study is to compare the performances of univariate and bivariate models on four time series variables of the crude palm oil industry in Peninsular Malaysia. The monthly data for the four variables, which are the crude palm oil production, price, import and export, were obtained from Malaysian Palm Oil Board (MPOB) and Malaysian Palm Oil Council (MPOC). In the first part of this study, univariate time series models, namely, the autoregressive integrated moving average (ARIMA), fractionally integrated autoregressive moving average (ARFIMA) and autoregressive autoregressive (ARAR) algorithm were used for modelling and forecasting purposes. Subsequently, the dependence between any two of the four variables were checked using the residuals’ sample cross correlation functions before modelling the bivariate time series. In order to model the bivariate time series and make prediction, the transfer function models were used. The forecast accuracy criteria used to evaluate the performances of the models were the mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results of the univariate time series showed that the best model for predicting the production was ARIMA  while the ARAR algorithm were the best forecast models for predicting both the import and export of crude palm oil. However, ARIMA  appeared to be the best forecast model for price based on the MAE and MAPE values while ARFIMA  emerged the best model based on the RMSE value.  When considering bivariate time series models, the production was dependent on import while the export was dependent on either price or import. The results showed that the bivariate models had better performance compared to the univariate models for production and export of crude palm oil based on the forecast accuracy criteria used.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 141
Author(s):  
Jacob Hale ◽  
Suzanna Long

Energy portfolios are overwhelmingly dependent on fossil fuel resources that perpetuate the consequences associated with climate change. Therefore, it is imperative to transition to more renewable alternatives to limit further harm to the environment. This study presents a univariate time series prediction model that evaluates sustainability outcomes of partial energy transitions. Future electricity generation at the state-level is predicted using exponential smoothing and autoregressive integrated moving average (ARIMA). The best prediction results are then used as an input for a sustainability assessment of a proposed transition by calculating carbon, water, land, and cost footprints. Missouri, USA was selected as a model testbed due to its dependence on coal. Of the time series methods, ARIMA exhibited the best performance and was used to predict annual electricity generation over a 10-year period. The proposed transition consisted of a one-percent annual decrease of coal’s portfolio share to be replaced with an equal share of solar and wind supply. The sustainability outcomes of the transition demonstrate decreases in carbon and water footprints but increases in land and cost footprints. Decision makers can use the results presented here to better inform strategic provisioning of critical resources in the context of proposed energy transitions.


Author(s):  
Nianjun Zhou ◽  
Dhaval Patel ◽  
Arun Iyengar ◽  
Shrey Shrivastava ◽  
Anuradha Bhamidipaty

Sign in / Sign up

Export Citation Format

Share Document