A Stochastic Analysis of Queues with Customer Choice and Delayed Information

2020 ◽  
Vol 45 (3) ◽  
pp. 1104-1126
Author(s):  
Jamol Pender ◽  
Richard Rand ◽  
Elizabeth Wesson

Many service systems provide queue length information to customers, thereby allowing customers to choose among many options of service. However, queue length information is often delayed, and it is often not provided in real time. Recent work by Dong et al. [Dong J, Yom-Tov E, Yom-Tov GB (2018) The impact of delay announcements on hospital network coordination and waiting times. Management Sci. 65(5):1969–1994.] explores the impact of these delays in an empirical study in U.S. hospitals. Work by Pender et al. [Pender J, Rand RH, Wesson E (2017) Queues with choice via delay differential equations. Internat. J. Bifurcation Chaos Appl. Sci. Engrg. 27(4):1730016-1–1730016-20.] uses a two-dimensional fluid model to study the impact of delayed information and determine the exact threshold under which delayed information can cause oscillations in the dynamics of the queue length. In this work, we confirm that the fluid model analyzed by Pender et al. [Pender J, Rand RH, Wesson E (2017) Queues with choice via delay differential equations. Internat. J. Bifurcation Chaos Appl. Sci. Engrg. 27(4):1730016-1–1730016-20.] can be rigorously obtained as a functional law of large numbers limit of a stochastic queueing process, and we generalize their threshold analysis to arbitrary dimensions. Moreover, we prove a functional central limit theorem for the queue length process and show that the scaled queue length converges to a stochastic delay differential equation. Thus, our analysis sheds new insight on how delayed information can produce unexpected system dynamics.

2019 ◽  
Vol 27 (1) ◽  
pp. 49-71
Author(s):  
MUSTAFA ERDEM ◽  
MUNTASER SAFAN ◽  
CARLOS CASTILLO-CHAVEZ

A delay differential equations epidemic model of SIQR (SusceptibleInfective-Quarantined-Recovered) type, with arbitrarily distributed periods in the isolation or quarantine class, is proposed. Its essential mathematical features are analyzed. In addition, conditions that support the existence of periodic solutions via Hopf bifurcation are identified. Nonexponential waiting times in the quarantine/isolation class lead not only to oscillations but can also support stability switches.


Author(s):  
Charles Puelz ◽  
Zach Danial ◽  
Jay S Raval ◽  
Jonathan L Marinaro ◽  
Boyce E Griffith ◽  
...  

Abstract This paper focuses on the derivation and simulation of mathematical models describing new plasma fraction in blood for patients undergoing simultaneous extracorporeal membrane oxygenation and therapeutic plasma exchange. Models for plasma exchange with either veno-arterial or veno-venous extracorporeal membrane oxygenation are considered. Two classes of models are derived for each case, one in the form of an algebraic delay equation and another in the form of a system of delay differential equations. In special cases, our models reduce to single compartment ones for plasma exchange that have been validated with experimental data (Randerson et al., 1982, Artif. Organs, 6, 43–49). We also show that the algebraic differential equations are forward Euler discretizations of the delay differential equations, with timesteps equal to transit times through model compartments. Numerical simulations are performed to compare different model types, to investigate the impact of plasma device port switching on the efficiency of the exchange process, and to study the sensitivity of the models to their parameters.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3157-3172
Author(s):  
Mujahid Abbas ◽  
Bahru Leyew ◽  
Safeer Khan

In this paper, the concept of a new ?-generalized quasi metric space is introduced. A number of well-known quasi metric spaces are retrieved from ?-generalized quasi metric space. Some general fixed point theorems in a ?-generalized quasi metric spaces are proved, which generalize, modify and unify some existing fixed point theorems in the literature. We also give applications of our results to obtain fixed points for contraction mappings in the domain of words and to prove the existence of periodic solutions of delay differential equations.


2006 ◽  
Vol 258-260 ◽  
pp. 586-591
Author(s):  
António Martins ◽  
Paulo Laranjeira ◽  
Madalena Dias ◽  
José Lopes

In this work the application of delay differential equations to the modelling of mass transport in porous media, where the convective transport of mass, is presented and discussed. The differences and advantages when compared with the Dispersion Model are highlighted. Using simplified models of the local structure of a porous media, in particular a network model made up by combining two different types of network elements, channels and chambers, the mass transport under transient conditions is described and related to the local geometrical characteristics. The delay differential equations system that describe the flow, arise from the combination of the mass balance equations for both the network elements, and after taking into account their flow characteristics. The solution is obtained using a time marching method, and the results show that the model is capable of describing the qualitative behaviour observed experimentally, allowing the analysis of the influence of the local geometrical and flow field characteristics on the mass transport.


Sign in / Sign up

Export Citation Format

Share Document