Electron microscopic studies on the anterior pituitary cells following castration in fetal and neonatal male rats.

1980 ◽  
Vol 42 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Yasunobu EGUCHI ◽  
Satoshi HANADA ◽  
Yoshio MORIKAWA
1989 ◽  
Vol 2 (1) ◽  
pp. 47-53 ◽  
Author(s):  
T.H. Jones ◽  
B. L. Brown ◽  
P. R. M. Dobson

ABSTRACT Bradykinin stimulated prolactin secretion from monolayer cultures of rat anterior pituitary cells, the stimulation being greater from the cells of male rats. This stimulated secretion was accompanied by a rise in total inositol phosphate accumulation, suggesting that the action of bradykinin is mediated by phosphoinositide hydrolysis. The increase in inositol phosphate accumulation was biphasic; a further sharp rise occurred when the concentration of bradykinin exceeded 1 μmol/l. This may indicate that bradykinin acts on other cell types in the pituitary gland. Bradykinin had no effect on growth hormone secretion from cells of normal pituitary glands, or on prolactin secretion and phosphoinositide metabolism in GH3 rat pituitary tumour cells. Bradykinin receptor antagonists (both B1 and B2) had no effect on either bradykinin-stimulated inositol phosphate accumulation or prolactin secretion. Kallikreins, the enzymes responsible for the generation of kinins, are known to be present in the adenohypophysis. Therefore, the results presented here would suggest that kinins may have a role as paracrine agents in the pituitary gland.


1991 ◽  
Vol 261 (2) ◽  
pp. C218-C223 ◽  
Author(s):  
M. Kato ◽  
P. M. Lledo ◽  
J. D. Vincent

Extracellular Li+ has been known to facilitate the basal secretion of growth hormone from anterior pituitary cells and of catecholamine from chromaffin cells. In both cases, the intracellular accumulation of Li+ seems to be the prerequisite, and the presence of extracellular Ca2+ is indispensable. In this series of experiments, we examined whether Li+ blocked K+ currents by using primary cultured anterior pituitary cells from male rats. K+ currents were measured in the whole cell configuration of the patch-clamp technique. Extracellular Li+ (140 mM) suppressed both the delayed rectifier K+ current (IK) and the transient outward K+ current to 71 and 69% of control, respectively, in a reversible manner. IK elicited by a voltage step to +70 mV from holding potential of -70 mV was suppressed by 32.5 mM internal Li+ to 28% of control. Half-maximal suppression of K+ conductance by internal Li+ was 16 mM. Furthermore, Ca(2+)-channel blocker methoxyverapamil potently suppressed Li(+)-induced growth hormone secretion. From these results we propose that the blockade by Li+ of K+ channels could depolarize the cells and activate Ca2+ channels, thereby promoting the influx of Ca2+ and hormone secretion as a mechanism of Li(+)-induced hormone secretion.


Endocrinology ◽  
2006 ◽  
Vol 147 (2) ◽  
pp. 859-864 ◽  
Author(s):  
Meghan M. Taylor ◽  
Sara L. Bagley ◽  
Willis K. Samson

Intermedin (IMD), a novel member of the adrenomedullin (AM), calcitonin gene-related peptide (CGRP), amylin (AMY) peptide family, has been reported to act promiscuously at all the known receptors for these peptides. Like AM and CGRP, IMD acts in the circulation to decrease blood pressure and in the brain to inhibit food intake, effects that could be explained by activation of the known CGRP, AM, or AMY receptors. Because AM, CGRP, and AMY have been reported to affect hormone secretion from the anterior pituitary gland, we examined the effects of IMD on GH, ACTH, and prolactin secretion from dispersed anterior pituitary cells harvested from adult male rats. IMD, in log molar concentrations ranging from 1.0 pm to 100 nm, failed to significantly alter basal release of the three hormones. Similarly, IMD failed to significantly alter CRH-stimulated ACTH or TRH-stimulated prolactin secretion in vitro. However, IMD concentration-dependently inhibited GHRH-stimulated GH release from these cell cultures. The effects of IMD, although requiring higher concentrations, were as efficacious as those of somatostatin and, like somatostatin, may be mediated, at least in part, by decreasing cAMP accumulation. These actions of IMD were not shared by other members of the AM-CGRP-AMY family of peptides, suggesting the presence of a novel, unique IMD receptor in the anterior pituitary gland and a potential neuroendocrine action of IMD to interact with the hypothalamic mechanisms controlling growth and metabolism.


1998 ◽  
Vol 159 (3) ◽  
pp. 389-395 ◽  
Author(s):  
D Pisera ◽  
S Theas ◽  
A De Laurentiis ◽  
M Lasaga ◽  
B Duvilanski ◽  
...  

We have previously reported that neurokinin A (NKA), a tachykinin closely related to substance P, increases the release of prolactin (PRL) from the anterior pituitary gland of male rats, but not from pituitaries of ovariectomized (OVX) female rats. In this study, we evaluated the influence of estrogens in the action of NKA on PRL secretion in female rats. NKA stimulated the in vitro release of PRL from pituitary glands of OVX-chronically estrogenized rats, and of proestrus and estrus rats, but had no effect in anterior pituitaries of diestrus rats. In addition, we observed that cultured anterior pituitary cells of OVX rats responded to NKA only when they were incubated for 3 days in the presence of estradiol 10(-9) M. This effect was blocked by L-659,877, an NK-2 receptor antagonist. We also studied the action of NKA on PRL release during lactation. The response of anterior pituitary cells to NKA was variable over this period. The maximal sensitivity to NKA was observed at day 10 of lactation. Furthermore, the blockade of endogenous NKA by the administration of an anti-NKA serum to lactating rats reduced the PRL surge induced by the suckling stimulus. These results show that the responsiveness of the anterior pituitary gland of female rats to NKA is modulated by the endocrine environment, and suggest that NKA may participate in the control of PRL secretion during the estrus cycle and lactation.


Author(s):  
Venita F. Allison

In 1930, Moore, Hughes and Gallager reported that after castration seminal vesicle epithelial cell atrophy occurred and that cell regeneration could be achieved with daily injections of testis extract. Electron microscopic studies have confirmed those observations and have shown that testosterone injections restore the epithelium of the seminal vesicle in adult castrated male rats. Studies concerned with the metabolism of androgens point out that dihydrotestosterone stimulates cell proliferation and that other metabolites of testosterone probably influence secretory function in certain target cells.Although the influence of androgens on adult seminal vesicle epithelial cytology is well documented, little is known of the effect of androgen depletion and replacement on those cells in aging animals. The present study is concerned with the effect of castration and testosterone injection on the epithelium of the seminal vesicle of aging rats.


Author(s):  
S. Tai

Extensive cytological and histological research, correlated with physiological experimental analysis, have been done on the anterior pituitaries of many different vertebrates which have provided the knowledge to create the concept that specific cell types synthesize, store and release their specific hormones. These hormones are stored in or associated with granules. Nevertheless, there are still many doubts - that need further studies, specially on the ultrastructure and physiology of these endocrine cells during the process of synthesis, transport and secretion, whereas some new methods may provide the information about the intracellular structure and activity in detail.In the present work, ultrastructural study of the hormone-secretory cells of chicken pituitaries have been done by using TEM as well as HR-SEM, to correlate the informations obtained from 2-dimensional TEM micrography with the 3-dimensional SEM topographic images, which have a continous surface with larger depth of field that - offers the adventage to interpretate some intracellular structures which were not possible to see using TEM.


Sign in / Sign up

Export Citation Format

Share Document