A study on synthesis of polyurethane dispersion by H12MDI and how effect to mechanical properties by ammonium dihydrogen phosphate

2014 ◽  
Vol 31 (1) ◽  
pp. 74-82
Author(s):  
Joo-Youb Lee ◽  
◽  
Sang-Sung Nam
Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1251 ◽  
Author(s):  
Zhongyuan Zhao ◽  
Shin Hayashi ◽  
Wei Xu ◽  
Zhihui Wu ◽  
Soichi Tanaka ◽  
...  

Development of a bio-based wood adhesive is a significant goal for several wood-based material industries. In this study, a novel adhesive based upon sucrose and ammonium dihydrogen phosphate (ADP) was formulated in hopes of furthering this industrial goal through realization of a sustainable adhesive with mechanical properties and water resistance comparable to the synthetic resins used today. Finished particleboards exhibited excellent mechanical properties and water resistance at the revealed optimal adhesive conditions. In fact, the board properties fulfilled in principle the requirements of JIS A 5908 18 type standard, however this occured at production conditions for the actual state of development as reported here, which are still different to usual industrial conditions. Thermal analysis revealed addition of ADP resulted in decreases to the thermal thresholds associated with degradation and curing of sucrose. Spectral results of FT-IR elucidated that furanic ring chemistry was involved during adhesive curing. A possible polycondensation reaction pathway was proposed from this data in an attempt to explain why the adhesive exhibited such favorable bonding properties.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5072-5086
Author(s):  
Ragil Widyorini

Bamboo is a potential non-wood lignocellulosic material from which to make particleboard. Sucrose-based adhesive is another potential ingredient, but its use in particleboard has been limited. Addition of ammonium dihydrogen phosphate (ADP) can be used to increase the bonding ability of sucrose-based adhesive and to reduce the required pressing temperature. Therefore, this research used different pressing temperatures and sucrose/ammonium dihydrogen phosphate (ADP) composition ratios to optimize the properties of particleboards. The physical and mechanical properties of the boards were analyzed and compared with the JIS A 5908 (2003) standard for particleboard. The results showed that the interaction of the sucrose-ADP composition ratio and the pressing temperature significantly affected the physical and mechanical properties of the particleboards. The particleboard using only sucrose as adhesive had optimum properties at 200 °C; however, after addition of ADP, the intended properties could be achieved at a 160 °C pressing temperature.


2014 ◽  
Vol 809-810 ◽  
pp. 477-484
Author(s):  
Zhao Qing Qi ◽  
Hong Tao Wang ◽  
Jun Liang Dang ◽  
Shi Hao Zhang ◽  
Jian Hua Ding

The capacity of 10%, 30%, and 50% ammonium dihydrogen phosphate were replaced with an equal amount of three phosphate (potassium dihydrogen phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate) respectively. Magnesium phosphate cement was made by phosphate of replaced, which strength, setting time, fluidity, hydration temperature, and the hydration products was researched. The results show that: MPC was made that replaced with the equal amount of three kind of phosphate, which has good mechanical properties. Setting time and fluidity change along with the replacment. Three kind of phosphate replace ammonium dihydrogen phosphate, which change the hydration process of MPC. When ammonium dihydrogen phosphate was replaced by an equal amount of disodium hydrogen phosphate, the temperature of hydration is only 69.4 °C. XRD showed that the diffraction peaks of composite’s magnesium phosphate cement increases.


2016 ◽  
Vol 675-676 ◽  
pp. 573-576 ◽  
Author(s):  
Pratya Thongpanit ◽  
Weerapong Chewpraditkul ◽  
Nakarin Pattanaboonmee

Ammonium dihydrogen phosphate (ADP) crystals is very interesting due to its nonlinear optical property. This study investigated on improving of material for academic use by adding boric acid to modify ADP crystals. Slow evaporation method in aqueous solutions of pure ADP and ADP doped with three concentrations of H3BO3 as 0.1, 1.0, 5.0 %wt were studied. The grown crystals were confirmed tetragonal structure by powder X-ray diffraction studies. The FTIR spectrum analysis presented various functional groups of boron in three conditions of doped ADP. TGA study was comfirned the temperature stability at 220 °C for both pure and doped ADP crytals. The machanical stress was analyzed by Vicker’s hardness measurement. The results of this analysis showed boric acid doped 1.0 %wt had superior machanical stress from 10 to 75 grams. ADP doped with boric acid at 1.0 %wt was accepted in all test properties.


Sign in / Sign up

Export Citation Format

Share Document