scholarly journals Enhanced skin localization of doxycycline using microparticles and hydrogel: Effect of oleic acid as penetration enhancer

Pharmaciana ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 239
Author(s):  
Aliyah Aliyah ◽  
Windy Winalda Oktaviana ◽  
Kadek Saka Dwipayanti ◽  
Arini Putri Erdiana ◽  
Rifka Nurul Utami ◽  
...  
2010 ◽  
Vol 13 (2) ◽  
pp. 286 ◽  
Author(s):  
Tailane Sant´Anna Moreira ◽  
Valéria Pereira De Sousa ◽  
Maria Bernadete Riemma Pierre

Abstract PURPOSE: Transdermal delivery of anti-inflammatory lumiracoxib (LM) could be an interesting strategy to avoid the side effects associated with systemic delivery, but it is ineffective due to the drug poor skin penetration. We have investigated the effects of oleic acid (OA), a lipid penetration enhancer, on the in vitro release of LM from poloxamer-based delivery systems (PBDS). The rheological behavior (shear rate dependent viscosity) and gelation temperature through measurements of optimal sol-gel transition temperatures (Tsol-gel) were also carried out in these systems. METHODS: In vitro release studies of LM from PBDS were performed using cellulose acetate as artificial membrane mounted in a diffusion system. The amount of LM released was divided by exposition area (µg/cm2) and these values were plotted as function of the time (h). The flux of the drug across the membrane (J) was calculated from the slope of the linear portion of the plot and expressed as µg/cm2. h -1. The determination of viscosity was carried out at different shear rates (γ) between 0.1- 1000 S-1 using a parallel plate rheometer. Oscillatory measurements using a cone-plate geometry rheometer surrounded by a double jacket with temperature varying 4-40°C, was used in order to determine Tsol-gel. RESULTS: Increase of both polymer and OA concentrations increases the viscosity of the gels and consequently reduces the in vitro LM release from the PBDS, mainly for gels containing OA at 10.0% compared to other concentrations of the penetration enhancer. Tsol-gel transition temperature was decreased by increasing viscosity; in some cases the formulation was already a gel at room temperature. Rheological studies showed a pseudoplastic behavior, which facilitates the flow and improves the spreading characteristics of the formulations. CONCLUSIONS: Taken together, the results showed that poloxamer gels are good potential delivery systems for LM, leading to a sustained release, and also have appropriate rheological characteristics. Novelty of the work: A transdermal delivery of non-steroidal antinflammatory drugs like lumiracoxib (LM) can be an interesting alternative to the oral route of this drug, since it was recently withdraw of the market due to the liver damage when systemically administered in tablets as dosage form. There are no transdermal formulations of LM and it could be an alternative to treat inflammation caused by arthritis or arthrosis. Then, an adequate delivery system to LM is necessary in order to release the drug properly from the PBDS as well as have good characteristics related to semi-solid preparations for transdermal application, which were evaluated through in vitro release studies and rheological behavior in this paper, respectively.


2015 ◽  
Vol 238 (2) ◽  
pp. S219
Author(s):  
B. Granum ◽  
B. Hasseltvedt ◽  
E.-C. Groeng ◽  
E. Namork

2002 ◽  
Vol 80 (1-3) ◽  
pp. 1-7 ◽  
Author(s):  
E. Touitou ◽  
B. Godin ◽  
Y. Karl ◽  
S. Bujanover ◽  
Y. Becker

Author(s):  
M.D. Bentzon ◽  
J. v. Wonterghem ◽  
A. Thölén

We report on the oxidation of a magnetic fluid. The oxidation results in magnetic super lattice crystals. The “atoms” are hematite (α-Fe2O3) particles with a diameter ø = 6.9 nm and they are covered with a 1-2 nm thick layer of surfactant molecules.Magnetic fluids are homogeneous suspensions of small magnetic particles in a carrier liquid. To prevent agglomeration, the particles are coated with surfactant molecules. The magnetic fluid studied in this work was produced by thermal decomposition of Fe(CO)5 in Declin (carrier liquid) in the presence of oleic acid (surfactant). The magnetic particles consist of an amorphous iron-carbon alloy. For TEM investigation a droplet of the fluid was added to benzine and a carbon film on a copper net was immersed. When exposed to air the sample starts burning. The oxidation and electron irradiation transform the magnetic particles into hematite (α-Fe2O3) particles with a median diameter ø = 6.9 nm.


1958 ◽  
Vol 34 (5) ◽  
pp. 901-909 ◽  
Author(s):  
Ervin Kaplan ◽  
Bernard D. Edidin ◽  
Robert C. Fruin ◽  
Lyle A. Baker

2015 ◽  
Author(s):  
LB Becnel ◽  
YF Darlington ◽  
S Orechsner ◽  
J Easton-Marks ◽  
CA Watkins ◽  
...  
Keyword(s):  

2019 ◽  
Vol 1 (1) ◽  
pp. 46
Author(s):  
F R Rangganita ◽  
L Hermida ◽  
A Angraeni ◽  
D Khoirunnisa

Sulfated zirconia functionalized SBA-15 catalsyt (SZr-SBA-15) was prepared byreacting SBA-15 with Zirkoniumoxychloride and urea at 90oC to form ZrO2-SBA-15. Then, ZrO2-SBA-15 was reacted with H2SO4 at room temperature to produceSZr-SBA-15 catalsyt.. The catalyst was characterized in terms of adsorptiondesorption nitrogen analysis, SEM-EDX and FTIR. Based on SEM-EDX andadsorption-desorption nitrogen analysis results, it was found that Zr had beenincorporated in SBA-15. By using the SZr-SBA-15 catalyst, esterification reactionof oleic acid with TMP to produce biolubricant oil of Trimethylolpropanetrioleatachieved 85% oleic acid conversion and selectivity of 63,7%. Reusability study ofSZr-SBA-15 catalyst was carried out for 3 rounds of reaction. It was found that thecatalyst could be used up to 3 rounds without significant decrease in activityKeywords: biolubricant oil, catalyst reusability, sba-15, sulfated zirconia.


2019 ◽  
Vol 1 (3) ◽  
pp. 68
Author(s):  
Puguh Setyopratomo ◽  
Edy Purwanto ◽  
H. Yefrico ◽  
H. Yefrico

The synthesis of glycerol mono oleic from oleic acid and glycerol is classified as an esterification reaction. This research is aimed to study the influent of reaction temperature and catalyst concentration on reaction conversion. During the experiment the temperature of reaction mixture was varied as 110 oC, 130 oC, and 150 oC, while the catalyst concentration of 1%, 3 %, and 5% was used. The batch experiment was conducted in a glass reactor equipped with termometer, agitator, and reflux condensor. The oleic acid – glycerol mol ratio of 1 : 2 was used as a mixture feed. To maintain the reaction temperature at certain level, the oil bath was used. After the temperature of reaction mixture was reached the expected value, then H2SO4 catalyst was added to the reactor.  To measure the extent of the reaction, every 30 minutes the sample was drawn out from the reactor vessel. The sample analysis include acid number, density, and viscosity measurement. From this research the optimum condition which is the temperature of reaction of 150 oC and 1% catalyst concentration was obtained. At this optimum condition the convertion reach 86% and the analysis of other physical properties of the product show the acid number of 24.12, the density of 0.922 g/cc, and the viscosity of 118.4 cp.


Sign in / Sign up

Export Citation Format

Share Document