scholarly journals NON-DESTRUCTIVE EXAMINATION USING NEUTRONS: A NUCLEAR WASTE AND ORPHANED SOURCE CHARACTERIZATION CASE STUDY APPLICABLE TO NUCLEAR FORENSICS

2015 ◽  
Vol 4 (2) ◽  
pp. 141-154
Author(s):  
Ronald B. Rogge ◽  
Ghaouti Bentoumi ◽  
F. (Ike) Dimayuga ◽  
Roxana Flacau ◽  
Gang Li ◽  
...  

Found unknown radioactive material is often contained in a package so the chemical and physical form of the material itself is unknown, and the detail of the packaging is likewise unknown. Together, these present a significant risk on how to handle the package for destructive examination of its contents. Whether of nefarious origin or the result of less stringent practices of yesteryear the material needs to be properly identified and characterized for appropriate disposition. Results of neutron imaging, neutron diffraction, and delayed neutron analysis as applied to an examination of sealed capsules containing unknown radioactive materials are presented. The results demonstrate that neutron-based non-destructive examination techniques can be employed for inspecting encapsulated radioactive samples to identify the materials, to elucidate the internal physical structure of the radioactive material and encapsulation, and to estimate the mass of fissile and fissionable materials within. This characterization of orphaned radioactive special nuclear material illustrates the potential for these techniques in nuclear forensics investigations.

Author(s):  
Matthew R. Feldman

Based on a recommendation from the Defense Nuclear Facilities Safety Board, the Department of Energy (DOE) Office of Nuclear Safety Policy and Assistance (HS-21) has recently issued DOE Manual 441.1-1 entitled Nuclear Material Packaging Manual. This manual provides guidance regarding the use of non-engineered storage media for all special nuclear material throughout the DOE complex. As part of this development effort, HS-21 has funded the Oak Ridge National Laboratory (ORNL) Transportation Technologies Group (TTG) to develop and demonstrate testing protocols for such onsite containers. ORNL TTG to date has performed preliminary tests of representative onsite containers from Lawrence Livermore National Laboratory and Los Alamos National Laboratory. This paper will describe the testing processes that have been developed.


Author(s):  
Daigo Setoyama ◽  
Hidehiko Kimura ◽  
Takenao Shinohara ◽  
Yoshihiro Matsumoto

2020 ◽  
Vol 12 (4) ◽  
pp. 168781402091376 ◽  
Author(s):  
Bing Wang ◽  
Shuncong Zhong ◽  
Tung-Lik Lee ◽  
Kevin S Fancey ◽  
Jiawei Mi

Composite materials/structures are advancing in product efficiency, cost-effectiveness and the development of superior specific properties. There are increasing demands in their applications to load-carrying structures in aerospace, wind turbines, transportation, medical equipment and so on. Thus, robust and reliable non-destructive testing of composites is essential to reduce safety concerns and maintenance costs. There have been various non-destructive testing methods built upon different principles for quality assurance during the whole lifecycle of a composite product. This article reviews the most established non-destructive testing techniques for detection and evaluation of defects/damage evolution in composites. These include acoustic emission, ultrasonic testing, infrared thermography, terahertz testing, shearography, digital image correlation, as well as X-ray and neutron imaging. For each non-destructive testing technique, we cover a brief historical background, principles, standard practices, equipment and facilities used for composite research. We also compare and discuss their benefits and limitations and further summarise their capabilities and applications to composite structures. Each non-destructive testing technique has its own potential and rarely achieves a full-scale diagnosis of structural integrity. Future development of non-destructive testing techniques for composites will be directed towards intelligent and automated inspection systems with high accuracy and efficient data processing capabilities.


2021 ◽  
Vol 2 (1) ◽  
pp. 011-015
Author(s):  
Alim Mardhi ◽  
Andryansyah Andryansyah ◽  
Mudi Haryanto ◽  
Topan Setiadipura ◽  
Ari Nugroho

One of the main programs that should be established on the designing process of the fuel handling system is to establish an in-service inspection program for maintaining the integrity of the system, structure and component during service lifetime. The most important role of in-service inspection is the nondestructive examination techniques. The objective of this study is to propose a preliminary program for examining the integrity of the fuel handling system during operation and determining the best method to confirm the defects. The proposed programs are described as follows, defining the operating environment of the fuel handling system, identifying the material characteristics during operation which indicates to promote the defects, and selecting the appropriate method of non-destructive examination and analysis technique for such kind of defects. The proposed in-service inspection program is expected to give significant additional value to the fuel handling system design of RDE.


2021 ◽  
Vol 5 (1) ◽  
pp. 6-14
Author(s):  
K.M. Nazarov ◽  
B. Mukhametuly ◽  
S.E. Kichanov ◽  
T.K. Zholdybayev ◽  
A.A. Shaimerdenov ◽  
...  

Since 2019, the TITAN neutron radiography and tomography facility have been operating at the WWR-K research reactor. The experimental station is intended for a wide range of applications in various fields of science. Since the launch, several interesting works have been carried out to study the internal features of lithium-ion batteries and geophysical materials. The spatial resolution of the detector system was sufficient to visualize the internal elements of the lithium battery and to separate individual grains of the pyrite mineral in the rock sample. This paper presents the technical parameters of the experimental setup and the results of the recent applied research.


Author(s):  
Xianghua Su ◽  
Quanhu Zhang ◽  
Suxia Hou ◽  
Sufen Li ◽  
Jianqing Yang ◽  
...  

Abstract Fast neutron multiplicity counting (FNMC) analysis method, as a new non-destructive analysis method for nuclear materials, plays an increasingly important role in the measurement of nuclear material properties. Based on the derivation of the FNMC analytical equation of Pu material, the method of solving the sample parameters was given. By analyzing the mechanism of interaction of neutrons and matter, the model used by Geant4 (version 10.4) software was determined, and a set of three-layer, fast neutron multiplicity counters with six liquid scintillation detectors per layer was constructed. Using the fast neutron multiplicity counter to analyze the measured parameters, the detection efficiency variation was less than 0.4% within the 150g sample mass range, and the PuO2 fluctuation was less than the metal Pu. By studying the detection efficiency and the multiplicity counting rate as a function of sample mass, within the 150g sample mass range, both basically meet the model assumptions of the FNMC analytical equation. The metal Pu and PuO2 samples were set separately, and the FNMC analysis equation was solved. When the sample mass was within 150g, the sample mass solution deviation was less than 10%. The results show that the built-in fast neutron multiplicity counter can better measure Pu sample properties.


Author(s):  
Su-xia Hou ◽  
Chen Chen ◽  
Quan-hu Zhang ◽  
Xiang-hua Su ◽  
Wen-ming Zuo

Segmented Gamma Scanner (SGS) is a commonly used nondestructive testing (Non-Destructive Assay NDA) method. SGS uses radial rotation, axial segmentation, segmented scanning of the non-uniform sample of the uniform treatment, making it possible to accurately measure the radioactivity on each segment and is currently widely used in the field of nuclear material management. This paper introduces a self-designed SGS measuring device and uses this device to perform a large number of scanning experiments on different measurement objects in the laboratory. It also studied the detection performance, stability and SGS method of different objects the accuracy of the measurement results.


Author(s):  
Pradeep Lall ◽  
Nakul Kothari ◽  
John Deep

Field extracted electrical assemblies, subjected to harsh environments including storage, and transportation may have often sustained degradation in their material properties and physical structure, without exhibiting external signs of damage. The lack of macro-indicators of damage makes the quantification of sustained damage and the remaining useful life challenging for assessment of the reliability makes quantification of accrued damage and remaining useful life much difficult. The operation environment requires survivability under high-g loads often in excess of 10,000g-100,000g. The need of non-destructive test methods for determination of the internal damage and the assessment of expected operational reliability under the presence of accrued damage from prolonged storage is extremely desirable. While a number of non-destructive test methods such as x-ray, and acoustic imaging exist in the state-of-art — they are limited to the acquisition of imaging of the internal damage state without the ability of conducting measurement of deformation under the action of environment loads. There is scarcity of literature on studying progressive damage to the physical structure of fuze components when subjected to high g shocks. Previously, researchers have studied the reliability of fuze subjected to high-temperature and high-g mechanical shocks, measured redundancy and reliability of fuze electronics through prediction of failure rates and MTTF using MIL-HDBK-217F standard, and performed on fault diagnosis. In this paper, a full-field deformation measurement technique has been presented to monitor damage in key components of the fuze after exposure to multiple high G shocks. Fuze assembly has been subjected to 30,000g mechanical shock until failure. The fuze assembly is CT scanned at regular intervals and the scan data is compared to the pristine scan data to compute physical deformations and damage sustained during the mechanical shock event.


Sign in / Sign up

Export Citation Format

Share Document