scholarly journals Non-destructive analysis of materials by neutron imaging at the TITAN facility

2021 ◽  
Vol 5 (1) ◽  
pp. 6-14
Author(s):  
K.M. Nazarov ◽  
B. Mukhametuly ◽  
S.E. Kichanov ◽  
T.K. Zholdybayev ◽  
A.A. Shaimerdenov ◽  
...  

Since 2019, the TITAN neutron radiography and tomography facility have been operating at the WWR-K research reactor. The experimental station is intended for a wide range of applications in various fields of science. Since the launch, several interesting works have been carried out to study the internal features of lithium-ion batteries and geophysical materials. The spatial resolution of the detector system was sufficient to visualize the internal elements of the lithium battery and to separate individual grains of the pyrite mineral in the rock sample. This paper presents the technical parameters of the experimental setup and the results of the recent applied research.

2019 ◽  
Vol 54 (9) ◽  
pp. 1217-1231 ◽  
Author(s):  
Ebrahim Oromiehie ◽  
Ulf Garbe ◽  
B Gangadhara Prusty

Automated fibre placement-based manufacturing technology is increasingly being used in several engineering applications. Manufacture of carbon fibre-reinforced plastic’s small/large structures have been made possible due to its remarkable capabilities like productivity and accuracy. Nevertheless, making high-quality composite laminate using automated fibre placement relies on the proper selection of critical processing variables to avoid internal flaws during the fibre placement process. Consequently, a reliable non-destructive inspection technique is required for quality assurance and structural integrity of fabricated laminates. Neutron radiography/tomography offers unique imaging capabilities over a wide range of applications including fibre-reinforced polymer composites. The application of this technique towards tomographic reconstruction of automated fibre placement-made thermoplastic composites is presented in this paper. It is shown that the porosity analysis using neutron imaging technique provides reliable information. Additionally, using such technique valuable data regarding the size and the location of the voids in the laminate can be acquired and informed. This will assist the composite structural analysts and designers to select the appropriate processing parameters towards a defect free automated fibre placement part manufacture.


Author(s):  
S. Abolfazl Moussavi Torshizi ◽  
Ali Hajilouy Benisi ◽  
Mohammad Durali

Design and optimization of centrifugal compressors, based on main blades configuration of impeller have been vastly discussed in open literature, but less researches have addressed splitters. In this research, the impeller of a commercial turbocharger compressor is investigated. Here, profiles of main blades are not changed while the effect of changing the configuration of splitters is studied. An optimization study is performed to find the best configuration using genetic algorithm over a complete operating curve of the compressor. CFD codes with experimental support are used to predict the compressor performance. Quantumetric tests beside destructive analysis of two impellers are implemented for material identification and selection which is necessary for manufacturing. After taking into account structural considerations and approving the safety by numerical simulation, the new impeller is manufactured using 5 axis CNC machine. Non destructive tests are performed for identification of any structural defects. The new impeller is then mounted on a turbocharger shaft and tested experimentally in a wide range of operating conditions, which leads to a design having 2.3% improvement in efficiency. This is an important achievement in all applications of centrifugal compressors, especially in turbochargers.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4725
Author(s):  
Kevin V. Hackshaw ◽  
Joseph S. Miller ◽  
Didem P. Aykas ◽  
Luis Rodriguez-Saona

Vibrational spectroscopy (mid-infrared (IR) and Raman) and its fingerprinting capabilities offer rapid, high-throughput, and non-destructive analysis of a wide range of sample types producing a characteristic chemical “fingerprint” with a unique signature profile. Nuclear magnetic resonance (NMR) spectroscopy and an array of mass spectrometry (MS) techniques provide selectivity and specificity for screening metabolites, but demand costly instrumentation, complex sample pretreatment, are labor-intensive, require well-trained technicians to operate the instrumentation, and are less amenable for implementation in clinics. The potential for vibration spectroscopy techniques to be brought to the bedside gives hope for huge cost savings and potential revolutionary advances in diagnostics in the clinic. We discuss the utilization of current vibrational spectroscopy methodologies on biologic samples as an avenue towards rapid cost saving diagnostics.


2016 ◽  
Vol 850 ◽  
pp. 153-160 ◽  
Author(s):  
Lin Feng He ◽  
Song Bai Han ◽  
Guo Hai Wei ◽  
Mei Mei Wu ◽  
Yu Wang ◽  
...  

Neutron imaging (NI) has unique feature compared with X-ray imaging for the difference of the transmission characteristics through matters. The sensitivity to light elements, especially hydrogen, and the large penetration length through metals give it special advantages. NI has become a particularly useful universal technique for scientific and applied studies in various research disciplines. This article reviews the recent development of neutron imaging at China Advanced Research Reactor (CARR), including the instrumentations for indirect and real-time imaging and their application for non-destructive testing of nuclear fuel rod, two-phase flow, fuel cell, rock and concrete, etc.


RADIOISOTOPES ◽  
1991 ◽  
Vol 40 (3) ◽  
pp. 126-128 ◽  
Author(s):  
Tomoko MAKINO NAKANISHI ◽  
Shinobu INANAGA ◽  
Hisao KOBAYASHI

2021 ◽  
Author(s):  
Abdul Muneem ◽  
Junya Yoshida ◽  
Hiroyuki Ekawa ◽  
Masahiro Hino ◽  
Katsuya Hirota ◽  
...  

Abstract Neutron imaging is a non-destructive inspection technique with a wide range of potential applications. One of the key technical interests concerning neutron imaging is to achieve micrometer-scale spatial resolution. However, developing a neutron detector with a high spatial resolution is a challenging task. Recent efforts are focused on achieving this milestone or even submicrometer spatial resolution. Herein, we introduce our technique for neutron imaging using a fine-grained nuclear emulsion and evaluate the spatial resolution. We used the fine-grained nuclear emulsion with a gadolinium-based Siemens star test pattern and a grating with a periodic structure of 9 μm. The deduced value of the spatial resolution is less than 1 μm using the developed technique. To the best of our knowledge, the submicrometer spatial resolution that we achieved using our method is the best among all reported neutron imaging devices.


Author(s):  
J W Steeds

There is a wide range of experimental results related to dislocations in diamond, group IV, II-VI, III-V semiconducting compounds, but few of these come from isolated, well-characterized individual dislocations. We are here concerned with only those results obtained in a transmission electron microscope so that the dislocations responsible were individually imaged. The luminescence properties of the dislocations were studied by cathodoluminescence performed at low temperatures (~30K) achieved by liquid helium cooling. Both spectra and monochromatic cathodoluminescence images have been obtained, in some cases as a function of temperature.There are two aspects of this work. One is mainly of technological significance. By understanding the luminescence properties of dislocations in epitaxial structures, future non-destructive evaluation will be enhanced. The second aim is to arrive at a good detailed understanding of the basic physics associated with carrier recombination near dislocations as revealed by local luminescence properties.


Sign in / Sign up

Export Citation Format

Share Document